428 research outputs found

    PAPR reduction in multicarrier modulation techniques based visible light communication systems

    Get PDF
    Visible light communication (VLC) is an optical wireless communication (OWC) technology that has the potential to provide high data rate transmission for indoor applications. VLC is a promising alternative technology with a large and unlicensed spectrum to complement the congested radio frequency (RF) based communication in order to meet the exponential growth and popularity of smart devices, data intensive services and applications. The use of low-cost commercially available front-end devices further highlights the attraction of VLC system. However, nonlinear dynamic range of front-end devices and optical channel impairments limit full exploitation of VLC available modulation bandwidth. To fully benefit from the inherent resources and mitigate these limitations, multicarrier modulation (MCM) techniques are adopted. However, these techniques are affected by high peak-to-average power ratio (PAPR) which imposes constraints on the limited dynamic range of the front-end devices and the average radiated optical power. The main focus throughout this thesis is to reduce the high PAPR of MCM modulation techniques-based VLC system by implementing pilot-assisted (PA) technique. Additionally, performance of PAPR reduced modulation techniques is investigated through analytical, simulation, and experimentally. This thesis first presents background of VLC system principles including the front-end devices, VLC channel, system impairments and challenges, and employed solutions. The principles, limitations, and performance of MCM modulation variants that are implemented in this work are presented. Moreover, principles of PAPR challenge in MCM based VLC, PAPR evaluation, impact on the transmitted signal as well as the existing PAPR reduction techniques are discussed. Looking at the gap, a PA is implemented as PAPR reduction technique which is presented in this work including its implementation and performance. Following that, multiple experimental studies on PAPR reduction of PA technique are presented. Two experimental demonstrations on the efficacy of PA PAPR reduction for PAM-DMT and DCO-OFDM based VLC using a single blue LED are presented. These studies are comparing the bit-error-rate (BER) performance of the proposed systems with conventional counterparts over a range of sampling rate. This shows that, the proposed systems perform better than conventional systems without PAPR reduction. The results are validated through simulation. Other two experimental studies on the previous systems with parameters optimisation and available modulation bandwidth utilisation are presented, which show that the proposed systems outperform the conventional systems in terms of BER. This is followed by investigating the PA PAPR reduction effect on the achievable data rate of a wavelength division multiplexing (WDM) based VLC system using three different LEDs for PAPR reduced DCO-OFDM and PAM-DMT systems. The proposed systems have achieved more than 8% data rate higher than that of conventional systems without BER performance degradation. Finally, analytical investigation of clipping noise that leads to distortion in a VLC system due to front-end devices limitations is presented. To mitigate the clipping noise, PAPR of the system is reduced by the PA technique. The analytical BER performance of the system with PAPR reduction is verified through simulation and then compared to that of the conventional system without PAPR reduction at similar clipping levels. The PA proposed system shows better BER performance at all clipping levels

    Characterisation of optimum devices and parameters for enhanced optical frequency comb generation

    Get PDF
    The Internet has become an irreplaceable aspect of our daily life. It is used every day by billions of people around the world for various functions such as business, study, and entertainment. Hence, an unabated rise in the demand for higher and faster data traffic has been experienced through the last few decades. This demand for bandwidth is further fuelled by the introduction of bandwidth intensive applications such as ultra-high-definition video streaming, real time online gaming and cloud services making the realization of higher capacity and performance optical networks a necessity. Today’s telecommunication systems are static, with pre-provisioned links requiring an expensive and time-consuming reconfiguration process. The state-of-the-art approach (wavelength division multiplexing - WDM), entailing multiple lasers emitting differing wavelengths (each modulated) multiplexed together (on a 50 GHz grid), cannot meet the growing demands. Hence, future networks need to be flexible and programmable, allowing for resources to be directed, where the demand exists, thus improving network efficiency. A cost-effective solution is to utilise the legacy fibre infrastructure more efficiently by reducing the size of the guard bands and allowing closer optical carrier spacing, thereby increasing the overall spectral efficiency. However, such a scheme imposes a stringent transmitter requirement in terms of wavelength stability, noise properties and cost-efficiency, which would not be met with the incumbent laser-array based transmitters. An attractive alternative would be to employ an optical frequency comb (OFC), which generates multiple phase-correlated optical carriers with a precise frequency separation. The reconfigurability of such a multi-carrier transmitter would enable tuning of channel spacing, number of carriers and emission wavelengths, according to the dynamic network demands. This thesis focusses on the externally injected gain-switched laser-based OFC (GSL-OFC) technique. Advances to the state of the art are achieved via a detailed static and dynamic characterisation of lasers, which is then used for enhancing the comb generation process. Specifically, initial efforts are devoted to the use of different laser structures for OFC generation. This aspect is then furthered by incorporating the concept of photonic integration to reduce the cost, power consumption and footprint of the multi-carrier transmitter. Self and externally seeded photonic integrated circuits are used to generate combs that are then fully characterized to verify their employability in optical networks

    Optical multicarrier sources for spectrally efficient optical networks

    Get PDF
    During the last 30 years the capacity of commercial optical systems exceeded the network traffic requirements, mainly due to the extraordinary scalability of wavelength division multiplexing technology that has been successfully used to expand capacity in optical systems and meet increasing bandwidth requirements since the early 1990’s. Nevertheless, the rapid growth of network traffic inverted this situation and current trends show faster growing network traffic than system capacity. To enable further and faster growth of optical communication network capacity, several breakthroughs occurred during the last decade. First, optical coherent communications, which were the subject of intensive research in the 1980’s, were revived. This triggered the employment of advanced modulation formats. Afterwards, with the introduction of orthogonal frequency division multiplexing (OFDM) and Nyquist WDM modulation techniques in optical communication systems, very efficient utilisation of the available spectral bandwidth was enabled. In such systems the spectral guard bands between neighbouring channels are minimised, at the expense of stricter requirements on the performance of optical sources, especially the frequency (or wavelength) stability. Attractive solutions to address the frequency stability issues are optical multicarrier sources which simultaneously generate multiple phase correlated optical carriers that ensure that the frequency difference between the carriers is fixed. In this thesis, a number of optical multicarrier sources are presented and analysed, with special focus being on semiconductor mode-locked lasers and gain-switched comb sources. High capacity and spectrally efficient optical systems for short and medium reach applications (from 3 km up to 300 km), based on optical frequency combs as optical sources, advanced modulation formats (m-QAM) and modulation techniques (OFDM and Nyquist WDM) have been proposed and presented. Also, certain optoelectronic devices (i.e. semiconductor optical amplifier) and techniques (feed-forward heterodyne linewidth reduction scheme) have been utilised to enable the desired system performance

    High capacity photonic integrated switching circuits

    Get PDF
    As the demand for high-capacity data transfer keeps increasing in high performance computing and in a broader range of system area networking environments; reconfiguring the strained networks at ever faster speeds with larger volumes of traffic has become a huge challenge. Formidable bottlenecks appear at the physical layer of these switched interconnects due to its energy consumption and footprint. The energy consumption of the highly sophisticated but increasingly unwieldy electronic switching systems is growing rapidly with line rate, and their designs are already being constrained by heat and power management issues. The routing of multi-Terabit/second data using optical techniques has been targeted by leading international industrial and academic research labs. So far the work has relied largely on discrete components which are bulky and incurconsiderable networking complexity. The integration of the most promising architectures is required in a way which fully leverages the advantages of photonic technologies. Photonic integration technologies offer the promise of low power consumption and reduced footprint. In particular, photonic integrated semiconductor optical amplifier (SOA) gate-based circuits have received much attention as a potential solution. SOA gates exhibit multi-terahertz bandwidths and can be switched from a high-gain state to a high-loss state within a nanosecond using low-voltage electronics. In addition, in contrast to the electronic switching systems, their energy consumption does not rise with line rate. This dissertation will discuss, through the use of different kind of materials and integration technologies, that photonic integrated SOA-based optoelectronic switches can be scalable in either connectivity or data capacity and are poised to become a key technology for very high-speed applications. In Chapter 2, the optical switching background with the drawbacks of optical switches using electronic cores is discussed. The current optical technologies for switching are reviewed with special attention given to the SOA-based switches. Chapter 3 discusses the first demonstrations using quantum dot (QD) material to develop scalable and compact switching matrices operating in the 1.55µm telecommunication window. In Chapter 4, the capacity limitations of scalable quantum well (QW) SOA-based multistage switches is assessed through experimental studies for the first time. In Chapter 5 theoretical analysis on the dependence of data integrity as ultrahigh line-rate and number of monolithically integrated SOA-stages increases is discussed. Chapter 6 presents some designs for the next generation of large scale photonic integrated interconnects. A 16x16 switch architecture is described from its blocking properties to the new miniaturized elements proposed. Finally, Chapter 7 presents several recommendations for future work, along with some concluding remark

    Optical frequency comb source for next generation access networks

    Get PDF
    The exponential growth of converged telecommunication services and the increasing demands for video rich multimedia applications have triggered the vast development of optical access technology to resolve the capacity bottleneck at metropolitan-access aggregations. To further enhance overall performance, next generation optical access networks will require highly efficient wavelength division multiplexing (WDM) technology beyond the capability of current standard time division multiplexed (TDM) systems. The successful implementation of future-proof WDM access networks depends on advancements in high performance transmission schemes as well as economical and practical electronic/photonic devices. This thesis focuses on an investigation of the use of optical frequency comb sources, and spectrally efficient modulation formats, in high capacity WDM based optical access networks. A novel injected gain switched comb generation technique which deliver simplicity, reliability, and cost effectiveness has been proposed and verified through experimental work. In addition, a detailed characterization of the optical comb source has been undertaken with special attention on the phase noise property of the comb lines. The potential of the injected gain switched comb source is then demonstrated in a digital coherent receiver based long reach WDM access scenario, which intends to facilitate 10 - 40 Gbit/s data delivery per channel . Furthermore, an optical scalar transmission scheme enabling the direct detection of higher order modulation format signals has been proposed and experimentally investigated

    Electroabsorption modulators used for all-optical signal processing and labelling

    Get PDF

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    Photonic and Electronic Co-integration for Millimetre-Wave Hybrid Photonic-Wireless Links

    Get PDF

    High speed energy efficient incoherent optical wireless communications

    Get PDF
    The growing demand for wireless communication capacity and the overutilisation of the conventional radio frequency (RF) spectrum have inspired research into using alternative spectrum regions for communication. Using optical wireless communications (OWC), for example, offers significant advantages over RF communication in terms of higher bandwidth, lower implementation costs and energy savings. In OWC systems, the information signal has to be real and non-negative. Therefore, modifications to the conventional communication algorithms are required. Multicarrier modulation schemes like orthogonal frequency division multiplexing (OFDM) promise to deliver a more efficient use of the communication capacity through adaptive bit and energy loading techniques. Three OFDM-based schemes – direct-current-biased OFDM (DCO-OFDM), asymmetrically clipped optical OFDM(ACO-OFDM), and pulse-amplitude modulated discrete multitone (PAM-DMT) – have been introduced in the literature. The current work investigates the recently introduced scheme subcarrier-index modulation OFDM as a potential energy-efficient modulation technique with reduced peak-to-average power ratio (PAPR) suitable for applications in OWC. A theoretical model for the analysis of SIM-OFDMin a linear additive white Gaussian noise (AWGN) channel is provided. A closed-form solution for the PAPR in SIM-OFDM is also proposed. Following the work on SIM-OFDM, a novel inherently unipolar modulation scheme, unipolar orthogonal frequency division multiplexing (U-OFDM), is proposed as an alternative to the existing similar schemes: ACO-OFDMand PAM-DMT. Furthermore, an enhanced U-OFDMsignal generation algorithm is introduced which allows the spectral efficiency gap between the inherently unipolar modulation schemes – U-OFDM, ACO-OFDM, PAM-DMT – and the conventionally used DCO-OFDM to be closed. This results in an OFDM-based modulation approach which is electrically and optically more efficient than any other OFDM-based technique proposed so far for intensity modulation and direct detection (IM/DD) communication systems. Non-linear distortion in the optical front-end elements is one of the major limitations for high-speed communication in OWC. This work presents a generalised approach for analysing nonlinear distortion in OFDM-based modulation schemes. The presented technique leads to a closed-form analytical solution for an arbitrary memoryless distortion of the information signal and has been proven to work for the majority of the known unipolar OFDM-based modulation techniques - DCO-OFDM, ACO-OFDM, PAM-DMT and U-OFDM. The high-speed communication capabilities of novel Gallium Nitride based μm-sized light emitting diodes (μLEDs) are investigated, and a record-setting result of 3.5Gb/s using a single 50-μm device is demonstrated. The capabilities of using such devices at practical transmission distances are also investigated, and a 1 Gb/s link using a single device is demonstrated at a distance of up to 10m. Furthermore, a proof-of-concept experiment is realised where a 50-μm LED is successfully modulated using U-OFDM and enhanced U-OFDM to achieve notable energy savings in comparison to DCO-OFDM

    The Experimental Design of Radio-over-Fibre System for 4G Long Term Evolution

    Get PDF
    The 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is the potential key to meet the exponentially increasing demand of the mobile end users. The entire LTE network architecture and signal processing is carried out at the enhanced NodeB (eNB) level, hence the increased complexity and cost. Therefore, it is not efficient to deploy eNB for the purpose of extending the network coverage. As a solution, deployment of relay node (RN), with radio-over-fibre (RoF) acting as the interface between eNB and RN is proposed. Due to the high path loss and multipath fading, wireless interface would not be the ideal channel between eNB and RN. A detailed investigation is carried out by comparing the Rayleigh multipath fading channel with the optical fibre channel, where the latter achieved a ~31 dB of signal-to-noise ratio (SNR) gain. The distributed feedback laser (DFB) is selected as the direct modulated laser (DML) source, where the modulation method introduces a positive frequency chirp (PFC). The existing mathematical expression does not precisely explain on how the rate equations contribute to PFC. Therefore, an expression for PFC is proposed and derived from the carrier and photon densities of the rate equations. Focusing on theoretical development of DML based RoF system, a varying fast Fourier transform (FFT) scheme is introduced into LTE-Advanced (LTE-A) technology as an alternative design to the carrier aggregation. A range of FFT sizes are investigated with different levels of optical launch power (OLP), the optimum OLP has been defined to be within the range of ~-6 to 0 dBm, which is known as the intermixing region. It is found that FFT size-128 provides improved average system efficiency of ~54% and ~65% in comparison to FFT size-64 and FFT size-128, respectively, within the intermixing region. While fixing FFT size to 128, the investigation is diverted to the optimisation of optical modulators. The author revealed that the performance of dual electrode-Mach Zehnder modulator (DE-MZM) is superior to both DML scheme and single electrode (SE)-MZM, where DE-MZM achieved a transmission span of 88 km and 71 km for 16-quadrature amplitude modulation (QAM) and 64-QAM, respectively. At the initial experimental link design and optimisation stage, an optimum modulation region (OMR) is proposed at the optical modulation index (OMI) of 0.38, which resulted in an average error vector magnitude (EVM) of ~1.01% for a 10 km span. The EVM of ~1.01% is further improved by introducing the optimum OLP region at –2 dBm, where the observed average EVM trimmed to ~0.96%. There is no deviation found in the intermixing region by transmitting the LTE signal through a varying transmission span of 10 to 60 km, additionally, it was also revealed that the LTE RoF nonlinear threshold falls above the OLP of 6 dBm. The proposed system was further developed to accommodate 2×2 multiple-input and multiple-output (MIMO) transmission by utilising analogue frequency division multiplexing (FDM) technique. The studies procured that the resulting output quality of signal at 2 GHz and 2.6 GHz is almost identical with a twofold gain in the peak data rate and no occurrence of intermodulation (IMD). In order to emulate the complete LTE RoF solution, an experimental design of full duplex frequency division duplex (FDD) system with dense wavelength division multiplexing (DWDM) architecture is proposed. It is found that channel spacing of 50 MHz between the downlink (DL) and uplink (UL) introduces severe IMD distortion, where an adjacent channel leakage ratio (ACLR) penalty of 14.10 dB is observed. Finally, a novel nonlinear compensation technique utilising a direct modulation based frequency dithering (DMFD) scheme is proposed. The LTE RoF system average SNR gain observed at OLP of 10 dBm for the 50 km transmission span is ~5.97 dB. External modulation based frequency dithering (EMFD) exhibits ~3 dB of average SNR gain over DMFD method
    corecore