34 research outputs found

    Improved Variational Iteration Solutions to the SIR Model of Dengue Fever Disease for the Case of South Sulawesi

    Get PDF
    The susceptible-infected-recovered (SIR) model of the spread of dengue fever for the case of South Sulawesi is considered. Rangkuti's variational iteration method (RVIM) is recalled. This paper makes four contributions. The first one is to provide a successive approximation method (SAM) for solving the considered model. The second one is to show that SAM and RVIM are identical. Thirdly, a modification of RVIM is proposed. Fourthly, it is shown that the modification leads to an improvement of the accuracy of the method. Both RVIM and the improved version are quite accurate for short time periods. However, the improved version is more accurate and is able to provide more realistic explicit solutions to the model

    Numerical Analysis of Fractional Order Epidemic Model of Childhood Diseases

    Get PDF
    The fractional order Susceptible-Infected-Recovered (SIR) epidemic model of childhood disease is considered. Laplace–Adomian Decomposition Method is used to compute an approximate solution of the system of nonlinear fractional differential equations. We obtain the solutions of fractional differential equations in the form of infinite series. The series solution of the proposed model converges rapidly to its exact value. The obtained results are compared with the classical case

    Mathematical modeling of an epidemic under vaccination in two interacting populations

    Get PDF
    >Magister Scientiae - MScIn this dissertation we present the quantitative response of an epidemic of the so-called SIR-type, in a population consisting of a local component and a migrant component. Each component can be divided into three classes, the susceptible individuals, usually denoted by S, who are uninfected but may contract the disease, infected individuals (I) who are infected and can spread the disease to the susceptible individuals and the class (R) of recovered individuals. If a susceptible individual becomes infected, it moves into the infected class. An infected individual, at recovery, moves to the class R. Firstly we develop a model describing two interacting populations with vaccination. Assuming the vaccination rate in both groups or components are constant, we calculate a threshold parameter and we call it a vaccination reproductive number. This invariant determines whether the disease will die out or becomes endemic on the (in particular, local) population. Then we present the stability analysis of equilibrium points and the effect of vaccination. Our primary finding is that the behaviour of the disease free equilibrium depend on the vaccination rates of the combined population. We show that the disease free equilibrium is locally asymptotically stable if the vaccination reproductive number is less than one. Also our stability analysis show that the global stability of the disease free equilibrium depends on the basic reproduction number, not the vaccination reproductive number. If the vaccination reproductive number is greater than one, then the disease free equilibrium is unstable and there exists three endemic equilibrium points in our model. Two of these three endemic equilibria are so-called boundary equilibrium points, which means that the infection is only in one group of the population. The third one which we focus on is the general endemic point for the whole system. We derive a threshold condition that determines whether the endemic equilibria is locally asymptotically stable or not. Secondly, by assuming that the rate of vaccination in the migrant population is constant, we apply optimal control theory to find an optimal vaccination strategy in the local population. Our numerical simulation shows the effectiveness of the control strategy. This model is suitable for modeling the real life situation to control many communicable diseases. Models similar to the model used in the main contribution of our dissertation do exist in the literature. In fact, our model can be regarded as being in-between those of [Jia et al., Theoretical Population Biology 73 (2008) 437-448] and [Piccolo and Billings, Mathematical and Computer Modeling 42 (2005) 291-299]. Nevertheless our stability analysis is original, and furthermore we perform an optimal control study whereas the two cited papers do not. The essence of chapter 5 and 6 of this dissertation is being prepared for publication.South Afric

    Modified HPMs Inspired by Homotopy Continuation Methods

    Get PDF
    Nonlinear differential equations have applications in the modelling area for a broad variety of phenomena and physical processes; having applications for all areas in science and engineering. At the present time, the homotopy perturbation method (HPM) is amply used to solve in an approximate or exact manner such nonlinear differential equations. This method has found wide acceptance for its versatility and ease of use. The origin of the HPM is found in the coupling of homotopy methods with perturbation methods. Homotopy methods are a well established research area with applications, in particular, an applied branch of such methods are the homotopy continuation methods, which are employed on the numerical solution of nonlinear algebraic equation systems. Therefore, this paper presents two modified versions of standard HPM method inspired in homotopy continuation methods. Both modified HPMs deal with nonlinearities distribution of the nonlinear differential equation. Besides, we will use a calcium-induced calcium released mechanism model as study case to test the proposed techniques. Finally, results will be discussed and possible research lines will be proposed using this work as a starting point

    Mathematical modelling of virus RSV: qualitative properties, numerical solutions and validation for the case of the region of Valencia

    Full text link
    El objetivo de esta memoria se centra en primer lugar en la modelización del comportamiento de enfermedades estacionales mediante sistemas de ecuaciones diferenciales y en el estudio de las propiedades dinámicas tales como positividad, periocidad, estabilidad de las soluciones analíticas y la construcción de esquemas numéricos para las aproximaciones de las soluciones numéricas de sistemas de ecuaciones diferenciales de primer orden no lineales, los cuales modelan el comportamiento de enfermedades infecciosas estacionales tales como la transmisión del virus Respiratory Syncytial Virus (RSV). Se generalizan dos modelos matemáticos de enfermedades estacionales y se demuestran que tiene soluciones periódicas usando un Teorema de Coincidencia de Jean Mawhin. Para corroborar los resultados analíticos, se desarrollan esquemas numéricos usando las técnicas de diferencias finitas no estándar desarrolladas por Ronald Michens y el método de la transformada diferencial, los cuales permiten reproducir el comportamiento dinámico de las soluciones analíticas, tales como positividad y periocidad. Finalmente, las simulaciones numéricas se realizan usando los esquemas implementados y parámetros deducidos de datos clínicos De La Región de Valencia de personas infectadas con el virus RSV. Se confrontan con las que arrojan los métodos de Euler, Runge Kutta y la rutina de ODE45 de Matlab, verificándose mejores aproximaciones para tamaños de paso mayor a los que usan normalmente estos esquemas tradicionales.Arenas Tawil, AJ. (2009). Mathematical modelling of virus RSV: qualitative properties, numerical solutions and validation for the case of the region of Valencia [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8316Palanci

    Feedback linearization-based vaccination control strategies for true-mass action type SEIR epidemic models

    Get PDF
    This paper presents a feedback linearization-based control strategy for a SEIR (susceptible plus infected plus infectious plus removed populations) propagation disease model. The model takes into account the total population amounts as a refrain for the illness transmission since its increase makes more difficult contacts among susceptible and infected. The control objective is novel in the sense that the asymptotically tracking of the removed-by-immunity population to the total population while achieving simultaneously the remaining population (i.e. susceptible plus infected plus infectious) to asymptotically converge to zero. The vaccination policy is firstly designed on the above proposed tracking objective. Then, it is proven that identical vaccination rules might be found based on a general feedback linearization technique. Such a formal technique is very useful in control theory which provides a general method to generate families of vaccination policies with sound technical background which include those proposed in the former sections of the paper. The output zero dynamics of the normal canonical form in the theoretical feedback linearization analysis is identified with that of the removed-by-immunity population. The various proposed vaccination feedback rules involved one of more of the partial populations and there is a certain flexibility in their designs since some control parameters being multiplicative coefficients of the various populations may be zeroed. The basic properties of stability and positivity of the solutions are investigated in a joint way. The equilibrium points and their stability properties as well as the positivity of the solutions are also investigated
    corecore