4,340 research outputs found

    Evolution and Modern Approaches for Thermal Analysis of Electrical Machines

    Get PDF
    In this paper, the authors present an extended survey on the evolution and the modern approaches in the thermal analysis of electrical machines. The improvements and the new techniques proposed in the last decade are analyzed in depth and compared in order to highlight the qualities and defects of each. In particular, thermal analysis based on lumped-parameter thermal network, finite-element analysis, and computational fluid dynamics are considered in this paper. In addition, an overview of the problems linked to the thermal parameter determination and computation is proposed and discussed. Taking into account the aims of this paper, a detailed list of books and papers is reported in the references to help researchers interested in these topics

    Thermal Modelling of the Ventilation and Cooling inside Axial Flux Permanent Magnet Generators

    Get PDF
    Axial flux permanent magnet generators are of particular interest for power generation in harsh and confined conditions. Due to their compactness and high power density, the ventilation and cooling inside axial flux permanent magnet generators have becoming increasingly important for further performance improvement. This thesis describes the developments of a lumped parameter, thermal modelling technique for axial flux permanent magnet generators. The main aim of this research is to develop a fast and accurate thermal modelling tool which can be used for rapid machine design and ultimately, to replace complex and time consuming CFD analyses in the machine design process. The thesis illustrates the construction of a generic thermal equivalent circuit, which comprises of conductive and convective sub-circuits, to model the conduction and convection heat transfers and temperature distributions in the radial and axial directions, within these machines. The conduction heat transfer between the solid components of these electrical machines is modelled by an annulus conductive thermal circuit derived from previous researchers; whereas, for convection heat transfer between the working fluid (air) and solids, the author has developed two convective thermal circuits, which are demonstrated as the Temperature Passing Method (TPM) and Heat Pick-up method in (HPM) in the thesis. Several case studies were designed to investigate the validity and accuracy of these thermal sub-circuits with both steady and transient boundary conditions. Since all the thermal impedances and capacitances used in the thermal circuits are in dimensionless form, the developed generic thermal equivalent circuit is capable of performing thermal simulations for axial flux generators of different sizes and topologies. Furthermore, special correction factors were introduced into the developed generic thermal equivalent circuit, to take into account the heat transfer in the circumferential direction in axial flux machines. The thesis also demonstrates how the heat transfer in the stator windings is modelled in the generic thermal equivalent circuit. Two analytical models, which are the Simple Concentric Model (SCM) and Concentric-annulus Layer Model (CLM) were developed, for the evaluation of the thermal resistances of the stator windings. The results evaluated from these analytical models were validated by several numerical models and experimental results of two-phase materials published by previous researchers. Lastly, experimental validation of the lumped parameter thermal equivalent circuit model and CFD simulations was conducted. Heat transfer coefficient measurements were carried out on two separate test rigs, which were a simplified single-sided axial flux machine test rig and a large-scale low speed axial flux machine. The experimental results were compared with the numerical results obtained from both the lumped parameter and CFD models. Good agreement between the experimental, lumped parameter model and CFD results were found. These indicate that the developed generic thermal circuit is potentially capable of replacing CFD analyses in the axial flux machines design process

    Advanced design methodology for permanent magnet synchronous machines in power applications

    Get PDF
    Most of the world electrical energy is consumed by electric motors, and then, the improvement in their performance leads to essential savings in the global energy consumption, required to reduce the CO2 emissions. Actually, the policies of governments and institutions are becoming more demanding and the manufacturers are forced to offer more and more optimized products. Moreover, many applications are increasingly demanding high performance in terms of power density, reliability or dynamic response, as in the case of electric vehicle, wind power generation or railway traction. The high energetic content of neodymium magnets causes that the permanent magnet machines (PMSM) are the more attractive option with respect to power density. In addition, thanks to the almost complete elimination of the rotor losses they are the most energetically efficient machines. The PMSM design requires of a multiphysical approach since it comprises electric, magnetic and thermal aspects. In this work, a comprehensive review of the technical literature regarding these machines has been done, and some areas for improvement have been found. Firstly, it is common that the procedure starts from a quite defined machine and just an optimization of a specific part is realized. Moreover, excessive dependence on designer’s experience and knowhow is observed, without giving clear instructions for taking design decisions. Finally, excessive dependence on time consuming FEM models is found. Hence, the main objective of this thesis is to develop and propose an advanced design methodology for PMSM design, characterized by being clear and complete, considering whole the design process and giving criteria and tools for taking decisions which lead to an optimum choice of the final solution. A PMSM design methodology has been proposed that enables the evaluation of large amounts of configurations in an automatic manner, easing to the designer the process of taking the final design decision. To implement this methodology, several tools have been developed and explained in detail: electromagnetic models coupled to thermal models and lumped parameter electromagnetic models. Some important modifications were done in the thermal models taken as a reference in order to consider different cooling conditions. In addition, a basis permeance network model was adapted to the selected machine topology and it was used to demonstrate its suitability to be used in combination with Frozen Permeability technique. Following the proposed design methodology, a 75 kW PMSM prototype was designed and validated at the IK4‐IKERLAN medium voltage laboratory. The obtained results have validated both the proposed design methodology and the developed and employed tools.La mayor parte de la energía eléctrica mundial es consumida en motores eléctricos, por lo que la mejora de sus prestaciones conduce a ahorros en el consumo energético esenciales si se quieren reducir las emisiones de CO2. De hecho, las políticas de gobiernos y asociaciones cada vez son más exigentes, y los diseñadores se ven forzados a lanzar productos cada vez más optimizados. Además, cada vez hay más aplicaciones que son muy exigentes en términos de densidad de potencia, fiabilidad o prestaciones dinámicas, como son el vehículo eléctrico, la generación eólica o la tracción ferroviaria. El altísimo contenido energético de los imanes de neodimio provoca que las máquinas imanes permanentes (PMSM) sean las más atractivas en términos de densidad de potencia. Además, debido a la casi total eliminación de pérdidas en el rotor se convierten en las máquinas más eficientes energéticamente. El diseño de una PMSM requiere de un enfoque multidisciplinar, ya que engloba aspectos eléctricos, magnéticos y térmicos. En este trabajo, se ha realizado una revisión exhaustiva de la literatura técnica publicada hasta la fecha en relación con el diseño de estas máquinas, y se han encontrado ciertos puntos de mejora. En primer lugar, muchas veces se parte de un diseño bastante definido y se optimiza una parte concreta del mismo. Además, se aprecia excesiva dependencia de la experiencia y knowhow del diseñador, sin establecer pautas claras para la toma de decisiones de diseño. Finalmente, dependen excesivamente del temporalmente costoso FEM. Por lo tanto, el objetivo principal de esta tesis es desarrollar una metodología avanzada de diseño de PMSMs que sea clara y completa, abarcando todo el proceso de diseño y aportando criterios y herramientas para la toma de decisiones que conduzcan a una elección óptima de la solución final. Se ha propuesto una metodología de diseño que permite la evaluación de gran cantidad de configuraciones de PMSM de forma automática, facilitando la decisión de diseño final por parte del diseñador. Para la implementación de esta metodología, diversas herramientas han tenido que ser desarrolladas y son explicadas en detalle: modelos analíticos electromagnéticos acoplados con modelos térmicos, y modelos electromagnéticos de parámetros concentrados. Importantes modificaciones fueron realizadas sobre los modelos térmicos adoptados para considerar diferentes refrigeraciones. Además, el circuito electromagnético de parámetros concentrados fue adaptado a la topología seleccionada y demostró su validez para ser utilizado en combinación con la técnica de Frozen Permeability. Siguiendo la metodología propuesta, se ha diseñado y fabricado un prototipo de 75 kW y se ha realizado la validación experimental en el laboratorio de media tensión de IK4‐IKERLAN. Los resultados obtenidos han servido para validar tanto la metodología de diseño como las herramientas empleadas en la misma.Munduko energia elektrikoaren zatirik handiena motor elektrikoetan kontsumitzen da, eta, ondorioz, prestazioak hobetzeak lagundu egiten du kontsumo energetikoan funtsezko aurrezpenak egiten, CO2 igorpenak murriztu nahi badira. Berez, gobernuen eta elkarteen eskakizunak gero eta zorrotzagoak dira, eta diseinatzaileak produktu gero eta optimizatuak atera beharrean daude. Gainera, gero eta aplikazio gehiago daude zorroztasun handia eskatzen dutenak potentzi dentsitateari, fidagarritasunari edo prestazio dinamikoei dagokienez, esaterako, ibilgailu elektrikoan, sorkuntza eolikoan edo tren trakzioan. Neodimiozko imanen eduki energetiko itzelaren ondorioz, iman makina iraunkorrak (PMSM) dira erakargarrienak potentzi dentsitateari dagokionez. Gainera, errotorearen galerak ia guztiz deuseztatzen direnez, energetikoki makinarik eraginkorrenak dira. PMSM bat diseinatzeko diziplina askoko ikuspegia behar da, alderdi elektrikoak, magnetikoak eta termikoak hartzen baititu bere baitan. Lan honetan orain arte honelako makinen diseinuari buruz argitaratutako literatura teknikoaren azterketa zehatza egin da, eta hobetzeko hainbat puntu aurkitu dira. Lehenik eta behin, askotan, abiapuntua nahiko definituta dagoen diseinu bat izaten da, eta egiten dena da horren zati jakin bat optimizatu. Gainera, gehiegizko mendekotasuna egoten da diseinatzailearen esperientzia eta knowhow‐arekiko, diseinuaren inguruko erabakiak hartzeko jarraibide argiak ezarri gabe. Azkenik, mendekotasun handia dago FEMek behin‐behinean duen kostu handiarekiko. Horrenbestez, tesiaren helburu nagusia da PMSMak diseinatzeko metodologia aurreratu bat garatzea, argia eta osatua, diseinuaren prozesu osoa hartuko duena, eta erabakiak hartzeko irizpideak eta tresnak eskainiko dituena, amaierako soluziorik onena aukeratu ahal izateko. Diseinurako proposatu den metodologiarekin PMSMko konfigurazio kopuru handi bat ebaluatu daiteke automatikoki, diseinatzaileari amaierako diseinua erabakitzen laguntzeko. Metodologia inplementatzeko, hainbat tresna garatu behar izan dira, eta horiek zehatz esplikatzen dira: eredu analitiko elektromagnetikoak, eredu termikoekin uztartuta, eta parametro kontzentratuen bidezko eredu elektromagnetikoak. Hautatutako eredu termikoetan aldaketa garrantzitsuak egin behar izan ziren, hozkuntza desberdinak lantzeko. Horrez gain, parametro kontzentratuen zirkuitu elektromagnetikoa hautatutako topologiara egokitu zen, eta bere balioa frogatu zuen, Frozen Permeability teknikarekin konbinatuta erabiltzeko. Proposatutako metodologiari jarraituz, 75 kW‐eko prototipo bat diseinatu eta fabrikatu da, eta balioztapen esperimentala egin da IK4‐IKERLANeko tentsio ertaineko laborategian. Lortutako emaitzek diseinuaren metodologia zein bertan erabilitako tresnak balioztatzeko balio izan dute

    Numerical Modelling and Analysis of a New Rotor Cooling Technique for Axial Flux Permanent Magnet Machines

    Get PDF
    An efficient thermal management is essential for an electrical machine because it determines its durability and performance; particularly the continuous power output. Without good thermal management, the operational temperature will exceed the machine’s temperature threshold limit, which may possibly lead to catastrophic failure. YASA Motors Ltd. specialise in the design and development of high efficiency electric motors specifically aimed at the automotive industry. However, the current Yokeless and Segmented Armature (YASA) machine has limited performance due to the sealed or confined design that limits the heat transfer on the rotors and the permanent magnets. Therefore, this thesis presents a new cooling technique for the YASA machine but which can also be adapted to any Axial Flux Permanent Magnet (AFPM) design in order to maximise its continuous performance for automotive and motorsports applications. The work begins with a detailed review on the issues of thermal challenges for electrical machines (i.e. efficiency, reliability and performance), the derivation of an AFPM machine and then the heat sources from which the electric machine losses are produced. Utilising the Computational Fluid Dynamics (CFD), the losses of a 50kW sealed YASA machine has been studied in order to understand the thermal characteristics and thermal distribution. The novel secondary cooling strategy of the rotor has been implemented by attaching several fan designs on the rotor including other design iteration to assess its cooling performance. The idea is to allow the fan to drive the coolant (air) in the machine and become a heat exchanger at the same time. At this stage, only a single side of the rotor has studied under secondary cooling design, while the other side remained sealed. In order to aid the design assessment, a novel dimensionless number named Cooling Performance Index (CPI) has been proposed. The CPI number helps in comparing the cooling performance, apart from the comparison in the flow and thermal characteristics of each design change. The dual rotor cooling technique for the YASA machine is subsequently presented, where the backward curve fan has been selected as the best option based on its higher CPI number. The air outlet of the non-drive-end rotor that has an attached fan, was channelled to the drive-end to cool the other side of the rotor. The CFD analysis prove that the dual rotor cooling technique is able to maintain the rotors and magnets temperature with an increase up to 300% (150kW) continuous power compared to the 50kW on the existing sealed machine. The work presented here is not limited to the YASA machine case; rather it can be extrapolated to any other disc-type AFPM machine

    Thermal Modeling of Permanent Magnet Synchronous Motors for Electric Vehicle Application

    Get PDF
    Permanent magnet synchronous motor (PMSM) is a better choice as a traction motor since it has high power density and high torque capability within compact structure. However, accommodating such high power within compact space is a great challenge, as it is responsible for significant rise of heat in PMSM. As a result, there is considerable increase in operating temperature which in turn negatively affects the electromagnetic performance of the motor. Further, if the temperature rise exceeds the permissible limit, it can cause demagnetization of magnets, damage of insulation, bearing faults, etc. which in turn affect the overall lifecycle of the motor. Therefore, thermal issues need to be dealt with carefully during the design phase of PMSM. Hence, the main focus of this thesis is to develop efficient ways for thermal modeling to address thermal issues properly. Firstly, a universal lumped parameter thermal network (LPTN) is proposed which can be used for all types of PMSMs regardless of any winding configuration and any position of magnets in the rotor. Further, a computationally efficient finite element analysis (FEA) thermal model is proposed with a novel hybrid technique utilizing LPTN strategy for addressing the air gap convection in an efficient way. Both proposed LPTN and FEA thermal models are simplified ways to predict motor temperature with a comparatively less calculation process. Finally, the proposed thermal models have been experimentally validated for the newly designed interior and surface mounted PMSM prototypes. Again, a procedure for effective cooling design process of PMSM has been suggested by developing an algorithm for cooling design optimization of the motor. Further, a computational fluid dynamics (CFD) model with a proposed two-way electro-thermal co-analysis strategy has been developed to predict both thermal and electromagnetic performance of PMSM more accurately considering the active cooling system. The developed step algorithm and CFD modeling approach will pave the way for future work on cooling design optimization of the newly designed interior and surface mounted PMSM prototypes

    Electromagnetic and thermal design of axial flux permanent magnet synchronous machines

    Get PDF

    Electro-thermal design and optimization of high-specific-power slotless PM machine for aircraft applications

    Get PDF
    A 1 MW high-frequency air-core permanent-magnet (PM) motor, with power density over 13 kW/kg (8 hp/lb) and efficiency over 96\%, is proposed for NASA hybrid-electric aircraft application. In order to maximize power density of the proposed motor topology, a large-scale multi-physics optimization, which is not favorable for current electrical machine software, is needed to obtain the best design candidates, which is not favorable for current electrical machine software. Therefore, developing electromagnetic (EM) and thermal analytical methods with computational efficiency and satisfactory accuracy is a key enabling factor for future multi-physics optimization of motor power density. This dissertation summarizes the efforts of developing an electro-thermal analysis and optimization scheme of the proposed motor for aircraft applications. Component hardware tests including windage loss, fan performance, full-scale stator temperature and litz-wire were conducted to validate the proposed prediction methods and provide calibrations in the motor design analysis. Furthermore, slotless litz wire winding geometry and strand size are optimized with the developed electro-thermal modeling including transposition effects. After gaining confidence in the developed electro-thermal models, an optimization design toolbox is built for the hybrid-electric engine systems study. The first application study is in partnership with Rolls Royce's Electrically Variable Engine Project to study thermal management system integration effects on motor sizing. The second study is in collaboration with Raytheon Technologies to study motor transient performance with phase change materials integration, which can be tailored to a hybrid-electric engine mission profile

    Thermal Management of E–Motors in Electric Vehicle Application Employing LPTN Model

    Get PDF
    The electric motor is at the center focus as an alternative to the internal combustion engine for automotive applications since it does not produce greenhouse gas emissions and can contribute significantly to the reduction of fossil fuel consumption globally. As extensive research works are being done on electric vehicles at present, thermal analysis of traction motor is increasingly becoming the key design factor to produce electric motors with high power and torque capabilities in order to satisfy electric vehicle driving requirements. Motor losses cause active heat generation in the motor components and excessive temperature rise affects the electromagnetic performance of the traction motor. High torque and power requirements based on the driving conditions under urban and highway drive conditions demand high capacity motor cooling system in order to keep the temperature within the safe limit. Hence, it is critical to develop and design a temperature prediction tool to dynamically estimate the winding and magnet temperature and regulate cooling to remove excessive heat from the motor. Conventional thermal modeling of motors includes analytical and numerical modeling. Analytical modeling is done by using Lumped Parameter Thermal Network (LPTN) which is analogous to electric circuit and a fast method for predicting temperature. It uses heat transfer equations involving thermal resistances and thermal capacitances to analytically determine temperature at different nodes. Numerical modeling is done in two ways–Finite Element Analysis and Computational Fluid Dynamics. Numerical modeling can produce more accurate results, but it requires more computational time. Since the temperature of motor components has to be predicted very quickly, i.e. during driving, LPTN is more effective because LPTN can quickly predict temperature based on the heat transfer equations. This thesis proposes an LPTN model that predicts motor temperature and regulates the required coolant flow rate simultaneously. Thus, it is able to dynamically predict the temperature. MATLAB Simulink has been used for simulation of the LPTN model for a laboratory PMSM prototype. The thermal resistances in the thermal network model have been obtained from the motor geometrical parameters. The electromagnetic loss data with respect to torque and speed were taken as input, and thus the temperature results of motor components have been found. The future work will be to implement this model into full scale prototype of the motor

    ANALYTICAL DYNAMIC THERMAL MODEL FOR SQUIRREL CAGE MOTORS USING SYSTEMMODELER

    Get PDF
    Importance of accurately predicting the thermal behavior of electric motors is of growing interest. This is due to the fact that careful design of a motor in terms of thermal behavior may significantly improve the overall performance of a motor. In addition, the temperature is the main limiting factor for motor loading. This thesis focuses on transient thermal behavior for three phase squirrel cage motors of intermittent duty types. Motors of these duty types may operate below and above rated torque and hence their dynamic thermal model is different from a steady-state thermal model. In a dynamic thermal model heat is stored in the different parts of the motor while the stored heat can be neglected for stationary thermal modelling, where it is enough only to simulate for thermal equilibrium. SystemModeler offers an opportunity to develop different tools for various types of calculations, but in this thesis the focus is on thermal analysis. The purpose of this thesis is to investigate how SystemModeler could be used when developing thermal models for squirrel cage motors of intermittent duty types. The target is to develop an analytical thermal model which is easy to use while being sufficiently accurate. The needed motor parameters should also be easily available. The basic information about the motor and information about operational as well as standstill time are filled into the tool. The main challenge with thermal models is the fact that many thermal phenomena are practically impossible to calculate and different correlations are needed. With help of the tool it is possible to predict how a motor of intermittent duty type would be heated during operation. Since all motor types had test results for thermal equilibrium it was possible to calibrate the thermal model for steady state before simulating transient conditions. The main advantages with tools developed in SystemModeler are that the structures of the created codes are readily accessible and easily modifiable. In addition the created model can be run over the network as an independent tool.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore