4,403 research outputs found

    Efficiency and time-optimal control of fuel cell - compressor - electrical drive systems

    Get PDF
    The proton exchange membrane fuel cell (PEMFC) based power generation sys- tem is regarded as one of the perspective energy supply solutions for a wide variety of applications including distributed power plants and transport. The main compo- nent of the FC system is the FC stack, where the process of electrochemical energy conversion takes place. Additionally, such systems usually contain an auxiliary compression subsystem which supplies the reactant gases to the FC stack as well as maintains certain operation conditions: pressure, temperature, humidity, etc. The proper operation of the compression system signi¯cantly improves the performance characteristics of the total system. On the other hand, it consumes a portion of the electrical energy produced, thus reducing the net e±ciency of the total system. This thesis focuses on an innovative way to improve both the energy e±ciency and the response characteristics of a power generation system with a PEMFC. The approach principally consists of the control of the air compressor powered by the electrical drive. This method could be considered as an alternative to a redesign of the complete system (changing the power level, using an extra energy bu®er, etc). The modern high-speed centrifugal compressor has been regarded as one of the best candidates for the FC system. It has appropriate characteristics with respect to e±ciency, reliability, compact design, etc. However, the presence of a stability margin or so-called "surge line" limits its operation area. With the aim to overcome this constraint, a novel active surge suppression approach has been proposed for application in the system. This control method relies on the high-performance speed control of the electrical drive and accurate measurement and estimation of the thermodynamic quantities, such as air pressure and mass °ow. The choice of an induction motor drive has been justi¯ed by its commonly known advantages: low cost, simple construction, high reliability, etc. These features be- come especially important in high-speed applications. For the detailed investigation and performance prediction of the prime mover, a global electromagnetic design pro- cedure with thermal analysis of a high-speed induction motor has been performed. The obtained analytical results have been veri¯ed numerically by a high-precision Finite Elements Method. A good agreement between the analytical and FEM simu- lation results has been achieved. The mentioned active surge control in combination with the high-performance ¯eld-oriented control of the induction motor has been im- plemented and tested. The test bench comprises the centrifugal compressor with the PVC piping system, the high-speed induction motor drive, the real-time data acquisition and the control system. The experimental results proved the e®ective- ness of the active surge suppression by means of the drive torque actuation: the operation point of the compressor can be moved beyond the surge line while the process remains stable. Using the combined mathematical models of the FC stack, the centrifugal com- pressor and the ¯eld-oriented controlled induction motor drive, the static and dy- namic behavior of the total system have been simulated, allowing to clarify the interaction between the electrochemical processes in the FC stack, the thermody- namic processes in the compression system and the electromechanical performance of the drive. Various system operating regimes have been proposed and analyzed. When the FC electrical load changes frequently and fast, the constant-speed operating regime can be used. In case of a slow variation of the FC electrical load, the variable- speed operating regime is advisable, providing a high energy e±ciency at low FC load. In intermediate cases, the load-following-mass °ow operating regime with the application of the active surge control of the compressor becomes preferable. This operating regime eliminates the relatively long mechanical transient process, keep- ing the energy consumption of the balance of plant (BoP) approximately linearly proportional to the main load. The operating regime with applied linear quadratic Gaussian (LQG) time-optimal control has been proposed as an alternative to the load-following-mass °ow operating regime and the variable-speed operating regime. The transition between two steady-state operating points, where the system e±- ciency is maximum, follows the time-optimal trajectory, keeping the transient re- sponse time small. Finally, recommendations for further research have been formulated concerning the dynamic response and energy-e±ciency of a fuel cell system. Mainly, the recom- mendations concern further improvements of presented control strategies and their more comprehensive experimental veri¯cation using a complete FC system. First of all, the use of a direct induction motor drive for the compressor stabiliza- tion would signi¯cantly improve the e®ectiveness of the surge control. It would allow to control the surge of higher frequency, or to stabilize the compressor operation at larger distance from the surge line. Second, a combination of the electrical drive torque control with a valve position control would result probably in a more e®ective surge control, together with fast transients of the system operating point. Third, the application of the electrical drive for the compressor active surge control in a FC system would require new control algorithms for energy-e±ciency improvement of the induction motor, not compromising its high-performance capa- bilities

    Optimal Control Of Induction Machines To Minimize Transient Energy Losses

    Get PDF
    Induction machines are electromechanical energy conversion devices comprised of a stator and a rotor. Torque is generated due to the interaction between the rotating magnetic field from the stator, and the current induced in the rotor conductors. Their speed and torque output can be precisely controlled by manipulating the magnitude, frequency, and phase of the three input sinusoidal voltage waveforms. Their ruggedness, low cost, and high efficiency have made them ubiquitous component of nearly every industrial application. Thus, even a small improvement in their energy efficient tend to give a large amount of electrical energy savings over the lifetime of the machine. Hence, increasing energy efficiency (reducing energy losses) in induction machines is a constrained optimization problem that has attracted attention from researchers. The energy conversion efficiency of induction machines depends on both the speed-torque operating point, as well as the input voltage waveform. It also depends on whether the machine is in the transient or steady state. Maximizing energy efficiency during steady state is a Static Optimization problem, that has been extensively studied, with commercial solutions available. On the other hand, improving energy efficiency during transients is a Dynamic Optimization problem that is sparsely studied. This dissertation exclusively focuses on improving energy efficiency during transients. This dissertation treats the transient energy loss minimization problem as an optimal control problem which consists of a dynamic model of the machine, and a cost functional. The rotor field oriented current fed model of the induction machine is selected as the dynamic model. The rotor speed and rotor d-axis flux are the state variables in the dynamic model. The stator currents referred to as d-and q-axis currents are the control inputs. A cost functional is proposed that assigns a cost to both the energy losses in the induction machine, as well as the deviations from desired speed-torque-magnetic flux setpoints. Using Pontryagin’s minimum principle, a set of necessary conditions that must be satisfied by the optimal control trajectories are derived. The conditions are in the form a two-point boundary value problem, that can be solved numerically. The conjugate gradient method that was modified using the Hestenes-Stiefel formula was used to obtain the numerical solution of both the control and state trajectories. Using the distinctive shape of the numerical trajectories as inspiration, analytical expressions were derived for the state, and control trajectories. It was shown that the trajectory could be fully described by finding the solution of a one-dimensional optimization problem. The sensitivity of both the optimal trajectory and the optimal energy efficiency to different induction machine parameters were analyzed. A non-iterative solution that can use feedback for generating optimal control trajectories in real time was explored. It was found that an artificial neural network could be trained using the numerical solutions and made to emulate the optimal control trajectories with a high degree of accuracy. Hence a neural network along with a supervisory logic was implemented and used in a real-time simulation to control the Finite Element Method model of the induction machine. The results were compared with three other control regimes and the optimal control system was found to have the highest energy efficiency for the same drive cycle

    Vector Control of Asynchronous Motor of Drive Train Using Speed Controller H∞

    Get PDF
    This study proposes the speed control of an asynchronous motor (AM) using the Antiwindup design. First, the conventional vector control based on proportional-integral (PI) controllers is developed for a constant speed set point. Then, a driving cycle is based on measurements on the Safi/Rabat motorway in Morocco using a microcontroller equipped with a GPS device. The collected practical speed is used as a speed reference for conventional vector control. The /Antiwindup controller of the direct rotor flow-oriented control is used to improve the performance of conventional vector control and optimize the energy consumption of the drive train. The effectiveness of the proposed control scheme is verified by numerical simulation. The results of the numerical validation of the proposed scheme showed good performance compared to conventional vector control. The speed control systems are analyzed for different operating conditions. These control strategies are simulated in the MATLAB/SIMULINK environment. The simulation results of the improved vector control of the Asynchronous Machine (AM) are used to validate this optimization approach in the dynamic regime, followed by a comparative analysis to evaluate the performance and effectiveness of the proposed approach. A practical model based on a TMS320F28379D embedded board and its reduced voltage inverter (24V) is used to implement the proposed method and verify the simulation results. Doi: 10.28991/ESJ-2022-06-04-012 Full Text: PD

    Performance of Induction Machines

    Get PDF
    Induction machines are one of the most important technical applications for both the industrial world and private use. Since their invention (achievements of Galileo Ferraris, Nikola Tesla, and Michal Doliwo-Dobrowolski), they have been widely used in different electrical drives and as generators, thanks to their features such as reliability, durability, low price, high efficiency, and resistance to failure. The methods for designing and using induction machines are similar to the methods used in other electric machines but have their own specificity. Many issues discussed here are based on the fundamental achievements of authors such as Nasar, Boldea, Yamamura, Tegopoulos, and Kriezis, who laid the foundations for the development of induction machines, which are still relevant today. The control algorithms are based on the achievements of Blaschke (field vector-oriented control) and Depenbrock or Takahashi (direct torque control), who created standards for the control of induction machines. Today’s induction machines must meet very stringent requirements of reliability, high efficiency, and performance. Thanks to the application of highly efficient numerical algorithms, it is possible to design induction machines faster and at a lower cost. At the same time, progress in materials science and technology enables the development of new machine topologies. The main objective of this book is to contribute to the development of induction machines in all areas of their applications

    Double extractor induction motor: Variational calculation using the Hamilton-Jacobi-Bellman formalism

    Get PDF
    Esta contribución presenta un control óptimo sobre un motor de inducción de doble extractor usando formalismo a través del modelo variacional. El criterio está sujeto a ecuaciones no-estacionarias de orden reducido (Ecuaciones Dinámicas de un Modelo de Orden Reducido (DSIM)). Como es bien sabido, en este modelo las variables de estado son el flujo del rotor y la velocidad del motor en un proceso mecánico de circuito. Para estados no-estacionario y estacionarios, basados en la teoría del control óptimo, este límite proporciona una función costosa dada como una contribución ponderada de una teoría DSIM. Para adquirir una ruta de flujo de rotor de energía más baja, la idea es minimizar la función a una dinámica de dos ecuaciones de la velocidad del motor y el flujo del rotor. Este problema se resuelve utilizando la ecuación de Hamilton-Jacobi-Bellman y se determina analíticamente una solución dependiente del tiempo para el flujo del rotor.This contribution presents optimal control over a double extractor induction motor using formalism through variational model. The criterion is subject to non-stationary equations of a reduced order (Dynamics equations of a reduced order model (DSIM)). As is well know, in this model the state variables are the rotor flow and motor speed in a circuit mechanical process. For non-stationary and stationary states, based on the theory of optimal control, this limit provides a high expensive function given as a weighted contribution of a DSIM theory. To order to acquire a lowest energy rotor flow path, the idea is to minimize the function to a dynamic of two equations of the motor speed and rotor flow. This problem is solved using with the Hamilton-Jacobi-Bellman equation and a time dependent solution for the rotor flow is determined analytically

    Novel measurement based load modeling and demand side control methods for fault induced delayed voltage recovery mitigation

    Get PDF
    The continuous increase in electric energy demand and limitations in the reinforcement of generation and transmission systems, have progressively led to a greater utilization of power systems and transmission lines. As a result, system conditions may arise where voltage collapse phenomena have a high probability to occur, either due to the accidents in the system structure, or to load becoming particularly heavy. Recently, Workshop on Residential Air Conditioner (A/C) Stalling of Department of Energy (DOE) reported that fault-induced delayed voltage recovery (FIDVR) is now a national issue since residential A/C penetration across U.S. is at an all time high and growing rapidly. The unique characteristics of air conditioner load could cause short-term voltage instability, fast voltage collapse, and delayed voltage recovery. In order to study and mitigate FIDVR problem, a systematic load modeling methodology utilizing novel parameter identification technique and an online demand side control scheme based on load shedding strategy are developed in this dissertation. As load characteristics change from traditional incandescent light bulbs to power electronics-based loads, and as the characteristics of motors change with the emergence of high-efficiency, low-inertia motor loads, it is critical to understand and model load responses to ensure stable operations of the power system during different contingencies. Developing better load models, therefore, has been an important issue for power system analysis and control. It is necessary to take advantage of the state-of-the-art techniques for load modeling and develop a systematic approach to establish accurate, aggregate load models for bulk power system stability studies. In this dissertation, a systematic methodology is provided to derive aggregate load models at the high voltage level (transmission system level) using measurement-based approach. A novel parameter identification technique via hybrid learning is also developed for deriving load model parameters accurately and efficiently. According to NERC\u27s definition, FIDVR is defined as the phenomenon whereby system voltage remains at significantly reduced levels for several seconds after a fault in transmission, subtransmission, or distribution has been cleared. Various studies have shown that FIDVR usually occurs in the areas dominated by induction motors with constant torque. These motors can stall in response to sustained low voltage and draw excessive reactive power from the power grid. Since no under voltage or stall protection is equipped with A/Cs, they can only be tripped by thermal protection which takes 3 to 20 seconds. Severe FIDVR event could lead to fast voltage collapse. In this dissertation, a novel online demand side control method utilizing motor kinetic energy is developed for disconnecting stalling motors at the transmission level to mitigate FIDVR and fast voltage collapse

    Applications of Power Electronics:Volume 1

    Get PDF

    Small-Signal Modelling and Analysis of Doubly-Fed Induction Generators in Wind Power Applications

    Get PDF
    The worldwide demand for more diverse and greener energy supply has had a significant impact on the development of wind energy in the last decades. From 2 GW in 1990, the global installed capacity has now reached about 100 GW and is estimated to grow to 1000 GW by 2025. As wind power penetration increases, it is important to investigate its effect on the power system. Among the various technologies available for wind energy conversion, the doubly-fed induction generator (DFIG) is one of the preferred solutions because it offers the advantages of reduced mechanical stress and optimised power capture thanks to variable speed operation. This work presents the small-signal modelling and analysis of the DFIG for power system stability studies. This thesis starts by reviewing the mathematical models of wind turbines with DFIG convenient for power system studies. Different approaches proposed in the literature for the modelling of the turbine, drive-train, generator, rotor converter and external power system are discussed. It is shown that the flexibility of the drive train should be represented by a two-mass model in the presence of a gearbox. In the analysis part, the steady-state behaviour of the DFIG is examined. Comparison is made with the conventional synchronous generators (SG) and squirrel-cage induction generators to highlight the differences between the machines. The initialisation of the DFIG dynamic variables and other operating quantities is then discussed. Various methods are briefly reviewed and a step-by-step procedure is suggested to avoid the iterative computations in initial condition mentioned in the literature. The dynamical behaviour of the DFIG is studied with eigenvalue analysis. Modal analysis is performed for both open-loop and closed-loop situations. The effect of parameters and operating point variations on small signal stability is observed. For the open-loop DFIG, conditions on machine parameters are obtained to ensure stability of the system. For the closed-loop DFIG, it is shown that the generator electrical transients may be neglected once the converter controls are properly tuned. A tuning procedure is proposed and conditions on proportional gains are obtained for stable electrical dynamics. Finally, small-signal analysis of a multi-machine system with both SG and DFIG is performed. It is shown that there is no common mode to the two types of generators. The result confirms that the DFIG does not introduce negative damping to the system, however it is also shown that the overall effect of the DFIG on the power system stability depends on several structural factors and a general statement as to whether it improves or detriorates the oscillatory stability of a system can not be made

    Structural vibration energy harvesting via bistable nonlinear attachments

    Get PDF
    A vibration-based bistable electromagnetic energy harvester coupled to a directly excited host structure is theoretically and experimentally examined. The primary goal of the study is to investigate the potential benet of the bistable element for harvesting broadband and low-amplitude vibration energy. The considered system consists of a grounded, weakly damped, linear oscillator (LO) coupled to a lightweight, damped oscillator by means of an element which provides for both cubic nonlinear and negative linear stiness components and electromechanical coupling elements. Single and repeated impulses with varying amplitude applied to the LO are the vibration energy sources considered. A thorough sensitivity analysis of the system's key parameters provides design insights for a bistable nonlinear energy harvesting (BNEH) device able to attain robust harvesting efficiency. Energy localization into the bistable attachment is achieved through the exploitation of three BNEH main dynamical regimes; namely, periodic cross-well, aperiodic (chaotic) cross-well, and in-well oscillations. For the experimental investigation on the performance of the bistable device, nonlinear and negative linear terms in the mechanical coupling are physically realized by exploiting the transverse displacement of a buckled slender steel beam; the electromechanical coupling is accomplished by an electromagnetic transducer

    Aeronautical engineering: A continuing bibliography, supplement 122

    Get PDF
    This bibliography lists 303 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980
    corecore