168 research outputs found

    A Scaling Law to Predict the Finite-Length Performance of Spatially-Coupled LDPC Codes

    Full text link
    Spatially-coupled LDPC codes are known to have excellent asymptotic properties. Much less is known regarding their finite-length performance. We propose a scaling law to predict the error probability of finite-length spatially-coupled ensembles when transmission takes place over the binary erasure channel. We discuss how the parameters of the scaling law are connected to fundamental quantities appearing in the asymptotic analysis of these ensembles and we verify that the predictions of the scaling law fit well to the data derived from simulations over a wide range of parameters. The ultimate goal of this line of research is to develop analytic tools for the design of spatially-coupled LDPC codes under practical constraints

    How to Find Good Finite-Length Codes: From Art Towards Science

    Full text link
    We explain how to optimize finite-length LDPC codes for transmission over the binary erasure channel. Our approach relies on an analytic approximation of the erasure probability. This is in turn based on a finite-length scaling result to model large scale erasures and a union bound involving minimal stopping sets to take into account small error events. We show that the performances of optimized ensembles as observed in simulations are well described by our approximation. Although we only address the case of transmission over the binary erasure channel, our method should be applicable to a more general setting.Comment: 13 pages, 13 eps figures, enhanced version of an invited paperat the 4th International Symposium on Turbo Codes and Related Topics, Munich, Germany, 200

    Finite-Length Scaling of Spatially Coupled LDPC Codes Under Window Decoding Over the BEC

    Get PDF
    We analyze the finite-length performance of spatially coupled low-density parity-check (SC-LDPC) codes under window decoding over the binary erasure channel. In particular, we propose a refinement of the scaling law by Olmos and Urbanke for the frame error rate (FER) of terminated SC-LDPC ensembles under full belief propagation (BP) decoding. The refined scaling law models the decoding process as two independent Ornstein-Uhlenbeck processes, in correspondence to the two decoding waves that propagate toward the center of the coupled chain for terminated SC-LDPC codes. We then extend the proposed scaling law to predict the performance of (terminated) SC-LDPC code ensembles under the more practical sliding window decoding. Finally, we extend this framework to predict the bit error rate (BER) and block error rate (BLER) of SC-LDPC code ensembles. The proposed scaling law yields very accurate predictions of the FER, BLER, and BER for both full BP and window decoding.Comment: Published in IEEE Transactions on Communications (Early Access). This paper was presented in part at the IEEE Information Theory Workshop (ITW), Visby, Sweden, August 2019 (arXiv:1904.10410

    Tree-Structure Expectation Propagation for LDPC Decoding over the BEC

    Full text link
    We present the tree-structure expectation propagation (Tree-EP) algorithm to decode low-density parity-check (LDPC) codes over discrete memoryless channels (DMCs). EP generalizes belief propagation (BP) in two ways. First, it can be used with any exponential family distribution over the cliques in the graph. Second, it can impose additional constraints on the marginal distributions. We use this second property to impose pair-wise marginal constraints over pairs of variables connected to a check node of the LDPC code's Tanner graph. Thanks to these additional constraints, the Tree-EP marginal estimates for each variable in the graph are more accurate than those provided by BP. We also reformulate the Tree-EP algorithm for the binary erasure channel (BEC) as a peeling-type algorithm (TEP) and we show that the algorithm has the same computational complexity as BP and it decodes a higher fraction of errors. We describe the TEP decoding process by a set of differential equations that represents the expected residual graph evolution as a function of the code parameters. The solution of these equations is used to predict the TEP decoder performance in both the asymptotic regime and the finite-length regime over the BEC. While the asymptotic threshold of the TEP decoder is the same as the BP decoder for regular and optimized codes, we propose a scaling law (SL) for finite-length LDPC codes, which accurately approximates the TEP improved performance and facilitates its optimization

    Turbo EP-based Equalization: a Filter-Type Implementation

    Get PDF
    This manuscript has been submitted to Transactions on Communications on September 7, 2017; revised on January 10, 2018 and March 27, 2018; and accepted on April 25, 2018 We propose a novel filter-type equalizer to improve the solution of the linear minimum-mean squared-error (LMMSE) turbo equalizer, with computational complexity constrained to be quadratic in the filter length. When high-order modulations and/or large memory channels are used the optimal BCJR equalizer is unavailable, due to its computational complexity. In this scenario, the filter-type LMMSE turbo equalization exhibits a good performance compared to other approximations. In this paper, we show that this solution can be significantly improved by using expectation propagation (EP) in the estimation of the a posteriori probabilities. First, it yields a more accurate estimation of the extrinsic distribution to be sent to the channel decoder. Second, compared to other solutions based on EP the computational complexity of the proposed solution is constrained to be quadratic in the length of the finite impulse response (FIR). In addition, we review previous EP-based turbo equalization implementations. Instead of considering default uniform priors we exploit the outputs of the decoder. Some simulation results are included to show that this new EP-based filter remarkably outperforms the turbo approach of previous versions of the EP algorithm and also improves the LMMSE solution, with and without turbo equalization

    Finite-Length Scaling of SC-LDPC Codes With a Limited Number of Decoding Iterations

    Get PDF
    We propose four finite-length scaling laws to predict the frame error rate (FER) performance of spatially-coupled low-density parity-check codes under full belief propagation (BP) decoding with a limit on the number of decoding iterations and a scaling law for sliding window decoding, also with limited iterations. The laws for full BP decoding provide a choice between accuracy and computational complexity; a good balance between them is achieved by the law that models the number of decoded bits after a certain number of BP iterations by a time-integrated Ornstein-Uhlenbeck process. This framework is developed further to model sliding window decoding as a race between the integrated Ornstein-Uhlenbeck process and an absorbing barrier that corresponds to the left boundary of the sliding window. The proposed scaling laws yield accurate FER predictions
    • …
    corecore