21 research outputs found

    Technology-related disasters:a survey towards disaster-resilient software defined networks

    Get PDF
    Resilience against disaster scenarios is essential to network operators, not only because of the potential economic impact of a disaster but also because communication networks form the basis of crisis management. COST RECODIS aims at studying measures, rules, techniques and prediction mechanisms for different disaster scenarios. This paper gives an overview of different solutions in the context of technology-related disasters. After a general overview, the paper focuses on resilient Software Defined Networks

    Resilient virtual topologies in optical networks and clouds

    Get PDF
    Optical networks play a crucial role in the development of Internet by providing a high speed infrastructure to cope with the rapid expansion of high bandwidth demand applications such as video, HDTV, teleconferencing, cloud computing, and so on. Network virtualization has been proposed as a key enabler for the next generation networks and the future Internet because it allows diversification the underlying architecture of Internet and lets multiple heterogeneous network architectures coexist. Physical network failures often come from natural disasters or human errors, and thus cannot be fully avoided. Today, with the increase of network traffic and the popularity of virtualization and cloud computing, due to the sharing nature of network virtualization, one single failure in the underlying physical network can affect thousands of customers and cost millions of dollars in revenue. Providing resilience for virtual network topology over optical network infrastructure thus becomes of prime importance. This thesis focuses on resilient virtual topologies in optical networks and cloud computing. We aim at finding more scalable models to solve the problem of designing survivable logical topologies for more realistic and meaningful network instances while meeting the requirements on bandwidth, security, as well as other quality of service such as recovery time. To address the scalability issue, we present a model based on a column generation decomposition. We apply the cutset theorem with a decomposition framework and lazy constraints. We are able to solve for much larger network instances than the ones in literature. We extend the model to address the survivability problem in the context of optical networks where the characteristics of optical networks such as lightpaths and wavelength continuity and traffic grooming are taken into account. We analyze and compare the bandwidth requirement between the two main approaches in providing resiliency for logical topologies. In the first approach, called optical protection, the resilient mechanism is provided by the optical layer. In the second one, called logical restoration, the resilient mechanism is done at the virtual layer. Next, we extend the survivability problem into the context of cloud computing where the major complexity arises from the anycast principle. We are able to solve the problem for much larger network instances than in the previous studies. Moreover, our model is more comprehensive that takes into account other QoS criteria, such that recovery time and delay requirement

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    Producción CientíficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de Economía, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT

    Modelling and Design of Resilient Networks under Challenges

    Get PDF
    Communication networks, in particular the Internet, face a variety of challenges that can disrupt our daily lives resulting in the loss of human lives and significant financial costs in the worst cases. We define challenges as external events that trigger faults that eventually result in service failures. Understanding these challenges accordingly is essential for improvement of the current networks and for designing Future Internet architectures. This dissertation presents a taxonomy of challenges that can help evaluate design choices for the current and Future Internet. Graph models to analyse critical infrastructures are examined and a multilevel graph model is developed to study interdependencies between different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are developed. These heuristic algorithms add links to increase the resilience of networks in the least costly manner and they are computationally less expensive than an exhaustive search algorithm. The performance of networks under random failures, targeted attacks, and correlated area-based challenges are evaluated by the challenge simulation module that we developed. The GpENI Future Internet testbed is used to conduct experiments to evaluate the performance of the heuristic algorithms developed

    Joint path and resource selection for OBS grids with adaptive offset based QOS mechanism

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2007.Thesis (Master's) -- Bilkent University, 2007.Includes bibliographical references leaves 71-76It is predicted that grid computing will be available for consumers performing their daily computational needs with the deployment of high bandwidth optical networks. Optical burst switching is a suitable switching technology for this kind of consumer grid networks because of its bandwidth granularity. However, high loss rates inherent in OBS has to be addressed to establish a reliable transmission infrastructure. In this thesis, we propose mechanisms to reduce loss rates in an OBS grid scenario by using network-aware resource selection and adaptive offset determination. We first propose a congestion-based joint resource and path selection algorithm. We show that path switching and network-aware resource selection can reduce burst loss probability and average completion time of grid jobs compared to the algorithms that are separately selecting paths and grid resources. In addition to joint resource and path selection, we present an adaptive offset algorithm for grid bursts which minimizes the average completion time. We show that the adaptive offset based QoS mechanism significantly reduces the job completion times by exploiting the trade-off between decreasing loss probability and increasing delay as a result of the extra offset time.Köseoğlu, MehmetM.S

    Resource Allocation for Periodic Traffic Demands in WDM Networks

    Get PDF
    Recent research has clearly established that holding-time-aware routing and wavelength assignment (RWA) schemes lead to significant improvements in resource utilization for scheduled traffic. By exploiting the knowledge of the demand holding times, this thesis proposes new traffic grooming techniques to achieve more efficient resource utilization with the goal of minimizing resources such as bandwidth, wavelength channels, transceivers, and energy consumption. This thesis also introduces a new model, the segmented sliding window model, where a demand may be decomposed into two or more components and each component can be sent separately. This technique is suitable for applications where continuous data transmission is not strictly required such as large file transfers for grid computing. Integer linear program (ILP) formulations and an efficient heuristic are put forward for resource allocation under the proposed segmented sliding window model. It is shown that the proposed model can lead to significantly higher throughput, even over existing holding-time-aware models

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking
    corecore