31 research outputs found

    Quality of service optimization of multimedia traffic in mobile networks

    Get PDF
    Mobile communication systems have continued to evolve beyond the currently deployed Third Generation (3G) systems with the main goal of providing higher capacity. Systems beyond 3G are expected to cater for a wide variety of services such as speech, data, image transmission, video, as well as multimedia services consisting of a combination of these. With the air interface being the bottleneck in mobile networks, recent enhancing technologies such as the High Speed Downlink Packet Access (HSDPA), incorporate major changes to the radio access segment of 3G Universal Mobile Telecommunications System (UMTS). HSDPA introduces new features such as fast link adaptation mechanisms, fast packet scheduling, and physical layer retransmissions in the base stations, necessitating buffering of data at the air interface which presents a bottleneck to end-to-end communication. Hence, in order to provide end-to-end Quality of Service (QoS) guarantees to multimedia services in wireless networks such as HSDPA, efficient buffer management schemes are required at the air interface. The main objective of this thesis is to propose and evaluate solutions that will address the QoS optimization of multimedia traffic at the radio link interface of HSDPA systems. In the thesis, a novel queuing system known as the Time-Space Priority (TSP) scheme is proposed for multimedia traffic QoS control. TSP provides customized preferential treatment to the constituent flows in the multimedia traffic to suit their diverse QoS requirements. With TSP queuing, the real-time component of the multimedia traffic, being delay sensitive and loss tolerant, is given transmission priority; while the non-real-time component, being loss sensitive and delay tolerant, enjoys space priority. Hence, based on the TSP queuing paradigm, new buffer managementalgorithms are designed for joint QoS control of the diverse components in a multimedia session of the same HSDPA user. In the thesis, a TSP based buffer management algorithm known as the Enhanced Time Space Priority (E-TSP) is proposed for HSDPA. E-TSP incorporates flow control mechanisms to mitigate congestion in the air interface buffer of a user with multimedia session comprising real-time and non-real-time flows. Thus, E-TSP is designed to provide efficient network and radio resource utilization to improve end-to-end multimedia traffic performance. In order to allow real-time optimization of the QoS control between the real-time and non-real-time flows of the HSDPA multimedia session, another TSP based buffer management algorithm known as the Dynamic Time Space Priority (D-TSP) is proposed. D-TSP incorporates dynamic priority switching between the real-time and non-real-time flows. D-TSP is designed to allow optimum QoS trade-off between the flows whilst still guaranteeing the stringent real-time component’s QoS requirements. The thesis presents results of extensive performance studies undertaken via analytical modelling and dynamic network-level HSDPA simulations demonstrating the effectiveness of the proposed TSP queuing system and the TSP based buffer management schemes

    Packet Scheduling and Quality of Service in HSDPA

    Get PDF

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Indoor Radio Measurement and Planning for UMTS/HSPDA with Antennas

    Get PDF
    Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, approximately 70-80% of the HSDPA traffic is estimated to originate from inside buildings. Thus for network operators, indoor coverage has become a necessity for technical and business reasons. Macro-cellular (outdoor) to indoor coverage is a natural inexpensive way of providing network coverage inside the buildings. However, it does not guarantee sufficient link quality required for optimal HSDPA operation. On the contrary, deploying a dedicated indoor system may be far too expensive from an operator\u27s point of view. In this thesis, the concept is laid for the understanding of indoor radio wave propagation in a campus building environment which could be used to plan and improve outdoor-to-indoor UMTS/HSDPA radio propagation performance. It will be shown that indoor range performance depends not only on the transmit power of an indoor antenna, but also on the product\u27s response to multipath and obstructions in the environment along the radio propagation path. An extensive measurement campaign will be executed in different indoor environments analogous to easy, medium and hard radio conditions. The effects of walls, ceilings, doors and other obstacles on measurement results would be observed. Chapter one gives a brief introduction to the evolution of UMTS and HSDPA. It goes on to talk about radio wave propagation and some important properties of antennas which must be considered when choosing an antenna for indoor radio propagation. The challenges of in-building network coverage and also the objectives of this thesis are also mentioned in this chapter. The evolution and standardization, network architecture, radio features and most importantly, the radio resource management features of UMTS/HSDPA are given in chapter two. In this chapter, the reason why Wideband Code Division Multiple Access (WCDMA) was specified and selected for 3G (UMTS) systems would be seen. The architecture of the radio access network, interfaces with the radio access network between base stations and radio network controllers (RNC), and the interface between the radio access network and the core network are also described in this chapter. The main features of HSDPA are mentioned at the end of the chapter. In chapter three the principles of the WCDMA air interface, including spreading, Rake reception, signal fading, power control and handovers are introduced. The different types and characteristics of the propagation environments and how they influence radio wave propagation are mentioned. UMTS transport, logical and physical channels are also mentioned, highlighting their significance and relationship in and with the network. Radio network planning for UMTS is discussed in chapter four. The outdoor planning process which includes dimensioning, detailed planning, optimization and monitoring is outlined. Indoor radio planning with distributed antenna systems (DAS), which is the idea and motivation behind this thesis work, is also discussed. The various antennas considered and the antenna that was selected for this thesis experiment was discussed in chapter five. The antenna radiation pattern, directivity, gain and input impedance were the properties of the antenna that were taken into consideration. The importance of the choice of the antenna for any particular type of indoor environment is also mentioned. In chapter six, the design and fabrication of the monopole antennas used for the experimental measurement is mentioned. The procedure for measurement and the equipment used are also discussed. The results gotten from the experiment are finally analyzed and discussed. In this chapter the effect of walls, floors, doors, ceilings and other obstacles on radio wave propagation will be seen. Finally, chapter seven concludes this thesis work and gives some directions for future work

    Optimization of the methodology of configuration of mobile communication networks

    Get PDF
    The mobile communication network has been growing quickly, and the mobile network maintenance is becoming more complex, in performance, network coverage, energy, time consuming and expensive. The telecommunication service provider and mobile network telecommunication operator worries to what is the better methodology to optimizing a mobile network configuration and to improve the most efficient operation and functionality, to increase a superior performance in technical aspect (Create, and integrate new network planning in hardware and software level), economic aspect (cost reduction in maintenance) and environmental aspect (use of renewable energy through solar panels or wind power system). The work developed in this dissertation aims to propose an optimization of methodology of configuration of mobile communication network and build an automated configuration system in different technology (GSM, UMTS and LTE) to provide a good quality and improvement in its architecture to meet the requirement for a large number of services or application through distinct means transmission and using technology appropriate with a new generation of hardware to reach certain area in a Base Station Transmition (BTS) and a Radio Network Controller (RNC) that permit configure and integrated hardware and software issues in distinct networks technology (GSM, UMTS and LTE).A rede de comunicação móvel tem crescido rapidamente e ficando cada vez mais complexa, sendo cada vez mais complicado melhorar o desempenho, a cobertura, a eficiência energética e ao mesmo tempo aumentar o numero de utilizadores e serviços. O provedor de serviços de telecomunicações e a operadora de rede móvel têm de se preocupar em optimizar de forma a garantir a melhor configuração de rede móvel tendo em vista melhorar a operação e funcionalidade, a fim de esta ser mais eficiente, no seu desempenho. Relativamente aos aspectos técnicos (Criar novo planeamento e integrar a uma rede ao nível hardware e de software), aspecto econômico (redução de custo na manutenção) e aspecto ambiental (uso de energia renovável, quer através de painéis solares como de sistemas eólicos). O trabalho desenvolvido nesta dissertação visa propor uma otimização da metodologia de configuração das redes de comunicação móveis e construir um sistema de configuração automatizado em diferentes tecnologias (GSM, UMTS e LTE), para garantir os mais altos padrões de qualidade e atender a exigência de um grande número de serviços ou aplicações através de diferentes meios de transmissão e uso de tecnologia apropriada com uma nova geração de hardware para atingir determinada área em uma Estação de Transmissão de Base (BTS) e numa Rede de Controlador de Rádio (RNC) que permitem configurar e integrar diversos tipos de hardware e software em tecnologia de diferentes redes (GSM, UMTS e LTE)

    Analytical Modelingof the WCDMA Interfacewith Packet Scheduling, Journal of Telecommunications and Information Technology, 2009 nr 3

    Get PDF
    The article presents the application of a new analytical model of the full-availability group carrying a mixture of different multi-rate traffic classes with compression property for modeling the WCDMA radio interface with packet scheduling. The proposed model can be directly used for modeling of theWCDMA interface in the UMTS network servicing different traffic classes. The described model can be applied for a validation of the efficiency of the WCDMA interface measured by the blocking probability and the average carried traffic for particular traffic classes

    Comparison of Picocell and DAS Configuration with HSPA Evolution

    Get PDF
    As demand of mobile data services has grown exponentially, it has increased pressure on mobile operators to enhance capacity in dense urban areas. Usage of internet and services related to mobile network has grown up. UMTS specification has been updated in order to cope with an increased amount of mobile data traffic. These upgrades and releases are based on international standards. HSDPA and HSUPA technologies are previous upgrades of UMTS network but now HSPA Evolution (HSPA+) is the upgraded version for UMTS. HSPA+ improves performance of mobile data transmission in downlink direction. Previously UMTS enabled user data of 384 kbps that was upgraded to 14.4 Mbps in downlink and 5.76 Mbps in uplink data rate by HSPA. But still the demand of data rate is increasing so HSPA+ upgraded UMTS to 21.1 Mbps in downlink and 5.76 Mbps in uplink. Due to these improvements in data rates, HSPA+ has become one of the striking choices for mobile operators. It has been forecasted that amount of data users will increase in future and this will set new challenges for mobile operators. The network is planned in such a way that more capacity is provided to places where more users are present. Most of the network traffic in dense urban area is generated by indoor users. Indoor planning is mostly done with multiple picocells or DAS configuration. The main differences between these two configurations are interference, total capacity, cost of the equipment and implementation. In this Master’s thesis, the main focus is to compare picocells and DAS configuration for HSPA+ by simulations and measurements. Several mobile terminals were used to generate low and high loads for HSPA+ network. These comparisons were made by analyzing the results for signal to interference ratio, total network throughput and several other indicators. The results showed that DAS outperforms picocells in low/high load conditions in terms of SIR, cell throughput and modulation technique. DAS is good choice for medium sized building due to handover free regions and smooth coverage. /Kir1
    corecore