2,868 research outputs found

    Survey of air cargo forecasting techniques

    Get PDF
    Forecasting techniques currently in use in estimating or predicting the demand for air cargo in various markets are discussed with emphasis on the fundamentals of the different forecasting approaches. References to specific studies are cited when appropriate. The effectiveness of current methods is evaluated and several prospects for future activities or approaches are suggested. Appendices contain summary type analyses of about 50 specific publications on forecasting, and selected bibliographies on air cargo forecasting, air passenger demand forecasting, and general demand and modalsplit modeling

    Navigation/traffic control satellite mission study. Volume 2 - Systems analyses

    Get PDF
    Systems analysis of spacecraft network for transoceanic traffic contro

    Experimental L-band SST satellite communications/surveillance terminal study. Volume 1 - Study summary

    Get PDF
    Study of design for experimental L band supersonic transport communications/surveillance termina

    High-Throughput Air-to-Ground Connectivity for Aircraft

    Get PDF
    Permanent connectivity to the Internet has become the defacto standard in the second decade of the 21st century. However, on-board aircraft connectivity is still limited. While the number of airlines offering in-flight connectivity increases, the current performance is insufficient to satisfy several hundreds of passengers simultaneously. There are several options to connect aircraft to the ground, i.e. direct air-to-ground, satellites and relaying via air-to-air links. However, each single solution is insufficient. The direct air-to-ground coverage is limited to the continent and coastal regions, while the satellite links are limited in the minimum size of the spot beams and air-to-air links need to be combined with a link to the ground. Moreover, even if a direct air-to-ground or satellite link is available, the peak throughput offered on each link is rarely achieved, as the capacity needs to be shared with other aircraft flying in the same coverage area. The main challenge in achieving a high throughput per aircraft lies in the throughput allocation. All aircraft should receive a fair share of the available throughput. More specifically, as an aircraft contains a network itself, a weighted share according to the aircraft size should be provided. To address this problem, an integrated air-to-ground network, which is able to provide a high throughput to aircraft, is proposed here. Therefore, this work introduces a weighted-fair throughput allocation scheme to provide such a desired allocation. While various aspects of aircraft connectivity are studied in literature, this work is the first to address an integrated air-to-ground network to provide high-throughput connectivity to aircraft. This work models the problem of throughput allocation as a mixed integer linear program. Two throughput allocation schemes are proposed, a centralized optimal solution and a distributed heuristic solution. For the optimal solution, two different objectives are introduced, a max-min-based and a threshold-based objective. The optimal solution is utilized as a benchmark for the achievable throughput for small scenarios, while the heuristic solution offers a distributed approach and can process scenarios with a higher number of aircraft. Additionally, an option for weighted-fair throughput allocation is included. Hence, large aircraft obtain a larger share of the throughput than smaller ones. This leads to fair throughput allocation with respect to the size of the aircraft. To analyze the performance of throughput allocation in the air-to-ground network, this work introduces an air-to-ground network model. It models the network realistically, but independent from specific network implementations, such as 5G or WiFi. It is also adaptable to different scenarios. The aircraft network is studied based on captured flight traces. Extensive and representative parameter studies are conducted, including, among others, different link setups, geographic scenarios, aircraft capabilities, link distances and link capacities. The results show that the throughput can be distributed optimally during high-aircraft-density times using the optimal solution and close to optimal using the heuristic solution. The mean throughput during these times in the optimal reference scenario with low Earth orbit satellites is 20 Mbps via direct air-to-ground links and 4 Mbps via satellite links, which corresponds to 10.7% and 1.9% of the maximum link throughput, respectively. Nevertheless, during low-aircraft-density times, which are less challenging, the throughput can reach more than 200 Mbps. Therefore, the challenge is on providing a high throughput during high-aircraft-density times. In the larger central European scenario, using the heuristic scheme, a minimum of 22.9 Mbps, i.e. 3.2% of the maximum capacity, can be provided to all aircraft during high-aircraft-density times. Moreover, the critical parameters to obtain a high throughput are presented. For instance, this work shows that multi-hop air-to-air links are dispensable for aircraft within direct air-to-ground coverage. While the computation time of the optimal solution limits the number of aircraft in the scenario, larger scenarios can be studied using the heuristic scheme. The results using the weighted-fair throughput allocation show that the introduction of weights enables a user-fair throughput allocation instead of an aircraft-fair throughput allocation. As a conclusion, using the air-to-ground model and the two introduced throughput allocation schemes, the achievable weighted-fair throughput per aircraft and the respective link choices can be quantified

    Experimental L-band SST satellite communications/surveillance terminal study. Volume 5 - Aircraft terminal definition

    Get PDF
    Aircraft terminal designs for experimental and operational supersonic transport for L band satellite air traffic contro

    Building a Global Launch Network: Extending the Reach of Dedicated Small Satellite Launch Using New, Data-Driven Spaceport Assessment Tools

    Get PDF
    The proliferation and sustained growth of small satellite architecture solutions, once an uncertain aspect of tomorrow’s space industry, are now largely perceived as a firm reality. Recent trends continue to show an increasing fraction of launch industry revenue being captured by small and dedicated launch vehicles, such as Virgin Orbit’s LauncherOne. Concurrently, another indicator of small satellite proliferation are recent announcements of increased rideshare opportunities by large launch vehicle operators. As numerous dedicated and rideshare launches emerge as solutions for small satellite customers, understanding the relative advantages and performance of these vehicles will be crucial to satisfy not only single launch, but broader architectural mission needs. Virgin Orbit and VOX Space have presented how a responsive air-launched architecture with multiple hosting spaceports and modularized systems at each can be leveraged to launch entire constellations within days. We have since continued to grow our spaceport network to support domestic and international mission planners that desire a launch vehicle that isn’t constrained to a permanent fixed site or departure corridor. Building upon that work, new analytical methods to analyze and communicate the advantages of air-launch from spaceports around the globe have been devised. Specifically we will quantitatively show how commercial and national security missions, especially in an era that require hybrid architectures, are improved with a geographically flexible and distributed launch capability. Tens of thousands of launches from unique sites are simulated to support various mission types. The result is an explicit evaluation of how the flexibility, ease-of-access, and unconstrained orbital inclination ranges of a global launch network can support hybrid system needs in ways that no other comparable launch system can, dedicated or otherwise

    Investigation of advanced navigation and guidance system concepts for all-weather rotorcraft operations

    Get PDF
    Results are presented of a survey conducted of active helicopter operators to determine the extent to which they wish to operate in IMC conditions, the visibility limits under which they would operate, the revenue benefits to be gained, and the percent of aircraft cost they would pay for such increased capability. Candidate systems were examined for capability to meet the requirements of a mission model constructed to represent the modes of flight normally encountered in low visibility conditions. Recommendations are made for development of high resolution radar, simulation of the control display system for steep approaches, and for development of an obstacle sensing system for detecting wires. A cost feasibility analysis is included

    Aeronautical engineering: A continuing bibliography, supplement 122

    Get PDF
    This bibliography lists 303 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    Application of ERTS-1 data to integrated state planning in the state of Maryland

    Get PDF
    There are no author-identified significant results in this report
    • …
    corecore