580 research outputs found

    Design and analysis of memristor-based reliable crossbar architectures

    Get PDF
    The conventional transistor-based computing landscape is already undergoing dramatic changes. While transistor-based devices’ scaling is approaching its physical limits in nanometer technologies, memristive technologies hold the potential to scale to much smaller geometries. Memristive devices are used majorly in memory design but they also have unignorable applications in logic design, neuromorphic computing, sensors among many others. The most critical research and development problems that must be resolved before memristive architectures become mainstream are related to their reliability. One of such reliability issue is the sneak-paths current which limits the maximum crossbar array size. This thesis presents various designs of the memristor based crossbar architecture and corresponding experimental analysis towards addressing its reliability issues. Novel contribution of this thesis starts with the formulation of robust analytic models for read and write schemes used in memristive crossbar arrays. These novel models are less restrictive and are suitable for accurate mathematical analysis of any mn crossbar array and the evaluation of their performance during these critical operations. In order to minimise the sneak-paths problem, we propose techniques and conditions for reliable read operations using simultaneous access of multiple bits in the crossbar array. Two new write techniques are also presented, one to minimise failure during single cell write and the other designed for multiple cells write operation. Experimental results prove that the single write technique minimises write voltage drop degradation compared to existing techniques. Test results from the multiple cells write technique show it consumes less power than other techniques depending on the chosen configuration. Lastly, a novel Verilog-A memristor model for simulation and analysis of memristor’s application in gas sensing is presented. This proposed model captures the gas sensing properties of titanium-dioxide using gas concentration to control the overall memristance of the device. This model is used to design and simulate a first-of-its-kind sneak-paths free memristor-based gas detection arrays. Experimental results from a 88 memristor sensor array show that there is a ten fold improvement in the accuracy of the sensor’s response when compared with a single memristor sensor

    Device Modeling and Circuit Design of Neuromorphic Memory Structures

    Get PDF
    The downscaling of CMOS technology and the benefits gleaned thereof have made it the cornerstone of the semiconductor industry for many years. As the technology reaches its fundamental physical limits, however, CMOS is expected to run out of steam instigating the exploration of new nanoelectronic devices. Memristors have emerged as promising candidates for future computing paradigms, specifically, memory arrays and neuromorphic circuits. Towards this end, this dissertation will explore the use of two memristive devices, namely, Transition Metal Oxide (TMO) devices and Insulator Metal Transition (IMT) devices in constructing neuromorphic circuits. A compact model for TMO devices is first proposed and verified against experimental data. The proposed model, unlike most of the other models present in the literature, leverages the instantaneous resistance of the device as the state variable which facilitates parameter extraction. In addition, a model for the forming voltage of TMO devices is developed and verified against experimental data and Monte Carlo simulations. Impact of the device geometry and material characteristics of the TMO device on the forming voltage is investigated and techniques for reducing the forming voltage are proposed. The use of TMOs in syanptic arrays is then explored and a multi-driver write scheme is proposed that improves their performance. The proposed technique enhances voltage delivery across the selected cells via suppressing the effective line resistance and leakage current paths, thus, improving the performance of the crossbar array. An IMT compact model is also developed and verified against experiemntal data and electro-thermal device simulations. The proposed model describes the device as a memristive system with the temperature being the state variable, thus, capturing the temperature dependent resistive switching of the IMT device in a compact form suitable for SPICE implementation. An IMT based Integrate-And-Fire neuron is then proposed. The IMT neuron leverages the temperature dynamics of the device to deliver the functionality of the neuron. The proposed IMT neuron is more compact than its CMOS counterparts as it alleviates the need for complex CMOS circuitry. Impact of the IMT device parameters on the neuron\u27s performance is then studied and design considerations are provided

    Neuro-memristive Circuits for Edge Computing: A review

    Full text link
    The volume, veracity, variability, and velocity of data produced from the ever-increasing network of sensors connected to Internet pose challenges for power management, scalability, and sustainability of cloud computing infrastructure. Increasing the data processing capability of edge computing devices at lower power requirements can reduce several overheads for cloud computing solutions. This paper provides the review of neuromorphic CMOS-memristive architectures that can be integrated into edge computing devices. We discuss why the neuromorphic architectures are useful for edge devices and show the advantages, drawbacks and open problems in the field of neuro-memristive circuits for edge computing

    Improving Performance and Endurance for Crossbar Resistive Memory

    Get PDF
    Resistive Memory (ReRAM) has emerged as a promising non-volatile memory technology that may replace a significant portion of DRAM in future computer systems. When adopting crossbar architecture, ReRAM cell can achieve the smallest theoretical size in fabrication, ideally for constructing dense memory with large capacity. However, crossbar cell structure suffers from severe performance and endurance degradations, which come from large voltage drops on long wires. In this dissertation, I first study the correlation between the ReRAM cell switching latency and the number of cells in low resistant state (LRS) along bitlines, and propose to dynamically speed up write operations based on bitline data patterns. By leveraging the intrinsic in-memory processing capability of ReRAM crossbars, a low overhead runtime profiler that effectively tracks the data patterns in different bitlines is proposed. To achieve further write latency reduction, data compression and row address dependent memory data layout are employed to reduce the numbers of LRS cells on bitlines. Moreover, two optimization techniques are presented to mitigate energy overhead brought by bitline data patterns tracking. Second, I propose XWL, a novel table-based wear leveling scheme for ReRAM crossbars and study the correlation between write endurance and voltage stress in ReRAM crossbars. By estimating and tracking the effective write stress to different rows at runtime, XWL chooses the ones that are stressed the most to mitigate. Additionally, two extended scenarios are further examined for the performance and endurance issues in neural network accelerators as well as 3D vertical ReRAM (3D-VRAM) arrays. For the ReRAM crossbar-based accelerators, by exploiting the wearing out mechanism of ReRAM cell, a novel comprehensive framework, ReNEW, is proposed to enhance the lifetime of the ReRAM crossbar-based accelerators, particularly for neural network training. To reduce the write latency in 3D-VRAM arrays, a collection of techniques, including an in-memory data encoding scheme, a data pattern estimator for assessing cell resistance distributions, and a write time reduction scheme that opportunistically reduces RESET latency with runtime data patterns, are devised

    Minimising impact of wire resistance in low-power crossbar array write scheme

    Get PDF
    This paper presents a circuit level analysis of write operation in memristor crossbar memory array with and without line resistance. Three write schemes: floating line, V/2 and V/3 are investigated. Analysis shows that floating line scheme could also be considered reliable in arrays with aspect ratio of 1:1 and negligible line resistance just like the latter two schemes. Further analysis also shows that high density crossbar structures cannot be designed using any of the three schemes with worst case line resistance and data distribution within the array. To solve this problem, we propose a voltage compensating technique for write voltage degradation caused by line resistance during write operation on crossbar array. This technique is able to enhance write voltage in the presence of worst case line resistance and thus enable the design of higher density and reliable crossbar array

    Power And Hotspot Modeling For Modern GPUs

    Get PDF
    As General Purpose GPUs (GPGPU) are increasingly becoming a prominent component of high performance computing platforms, power and thermal dissipation are getting more attention. The trade-offs among performance, power, and heat must be well modeled and evaluated from the early stage of GPU design. This necessitates a tool that allows GPU architects to quickly and accurately evaluate their design. There are a few models for GPU power but most of them estimate power at a higher level than architecture, which are therefore missing hardware reconfigurability. In this thesis, we propose a framework that models power and heat dissipation at the hardware architecture level, which allows for configuring and investigating individual hardware components. Our framework is also capable of visualizing the heat map of the processor over different clock cycles. To the best of our knowledge, this is the first comprehensive framework that integrates and visualizes power consumption and heat dissipation of GPUs
    corecore