9,285 research outputs found

    A Complete Grammar for Decomposing a Family of Graphs into 3-connected Components

    Full text link
    Tutte has described in the book "Connectivity in graphs" a canonical decomposition of any graph into 3-connected components. In this article we translate (using the language of symbolic combinatorics) Tutte's decomposition into a general grammar expressing any family of graphs (with some stability conditions) in terms of the 3-connected subfamily. A key ingredient we use is an extension of the so-called dissymmetry theorem, which yields negative signs in the grammar. As a main application we recover in a purely combinatorial way the analytic expression found by Gim\'enez and Noy for the series counting labelled planar graphs (such an expression is crucial to do asymptotic enumeration and to obtain limit laws of various parameters on random planar graphs). Besides the grammar, an important ingredient of our method is a recent bijective construction of planar maps by Bouttier, Di Francesco and Guitter.Comment: 39 page

    Counting connected graphs with large excess

    Get PDF
    International audienceWe enumerate the connected graphs that contain a linear number of edges with respect to the number of vertices. So far, only the first term of the asymptotics was known. Using analytic combinatorics, i.e. generating function manipulations, we derive the complete asymptotic expansion

    On Zero-One and Convergence Laws for Graphs Embeddable on a Fixed Surface

    Get PDF
    We show that for no surface except for the plane does monadic second-order logic (MSO) have a zero-one-law - and not even a convergence law - on the class of (connected) graphs embeddable on the surface. In addition we show that every rational in [0,1] is the limiting probability of some MSO formula. This strongly refutes a conjecture by Heinig et al. (2014) who proved a convergence law for planar graphs, and a zero-one law for connected planar graphs, and also identified the so-called gaps of [0,1]: the subintervals that are not limiting probabilities of any MSO formula. The proof relies on a combination of methods from structural graph theory, especially large face-width embeddings of graphs on surfaces, analytic combinatorics, and finite model theory, and several parts of the proof may be of independent interest. In particular, we identify precisely the properties that make the zero-one law work on planar graphs but fail for every other surface

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ∼1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure
    • …
    corecore