21 research outputs found

    Heading control for a robotic dolphin based on a self-tuning fuzzy strategy

    Full text link
    In this paper, a heading controller based on a self-tuning fuzzy strategy for a robotic dolphin is proposed to improve control accuracy and stability. The structure of the robotic dolphin is introduced and the turning motion is analysed. The analytic model indicates that the turning joint angle can be employed for the heading control. This non-linear model prevents the successful application of traditional modelbased controllers. A fuzzy controller is proposed to realize the heading control in our work. It should be mentioned that the traditional fuzzy controller suffers from a distinguished steady-state error, due to the fact that the heading range is relatively large and the fuzzy controller\u27s universe of discourse is fixed. To resolve this problem, a self-tuning mechanism is employed to adjust the input and output scaling factors according to the active working region in pursuit of favourable performance. Experimental results demonstrate the performance of the proposed controller in terms of steady-state error and robustness to interferences

    Modeling and Control of Flexible Link Manipulators

    Get PDF
    Autonomous maritime navigation and offshore operations have gained wide attention with the aim of reducing operational costs and increasing reliability and safety. Offshore operations, such as wind farm inspection, sea farm cleaning, and ship mooring, could be carried out autonomously or semi-autonomously by mounting one or more long-reach robots on the ship/vessel. In addition to offshore applications, long-reach manipulators can be used in many other engineering applications such as construction automation, aerospace industry, and space research. Some applications require the design of long and slender mechanical structures, which possess some degrees of flexibility and deflections because of the material used and the length of the links. The link elasticity causes deflection leading to problems in precise position control of the end-effector. So, it is necessary to compensate for the deflection of the long-reach arm to fully utilize the long-reach lightweight flexible manipulators. This thesis aims at presenting a unified understanding of modeling, control, and application of long-reach flexible manipulators. State-of-the-art dynamic modeling techniques and control schemes of the flexible link manipulators (FLMs) are discussed along with their merits, limitations, and challenges. The kinematics and dynamics of a planar multi-link flexible manipulator are presented. The effects of robot configuration and payload on the mode shapes and eigenfrequencies of the flexible links are discussed. A method to estimate and compensate for the static deflection of the multi-link flexible manipulators under gravity is proposed and experimentally validated. The redundant degree of freedom of the planar multi-link flexible manipulator is exploited to minimize vibrations. The application of a long-reach arm in autonomous mooring operation based on sensor fusion using camera and light detection and ranging (LiDAR) data is proposed.publishedVersio

    Smart actuation and sensing for meso-scale surgical robotic systems

    Get PDF
    This dissertation presents the development of meso-scale surgical robotics based on smart actuation and sensing for minimally invasive surgery (MIS). By replacing conventional straight tools by steerable surgical robots, surgical outcomes can potentially be improved due to more precise, stable, and flexible manipulation. Since bending and torsion are the two fundamental motion forms required by surgical tools to complete general surgical procedures, compact torsion and bending modules, both integrated with intrinsic sensors for motion feedback, have been developed based on shape memory alloy (SMA). The developed actuation and sensing techniques have been applied on a robot for neurosurgical intracerebral hemorrhage evacuation (NICHE) and a steerable catheter for atrial fibrillation (AFib) treatment. The NICHE robot consists of a straight stem, an SMA torsion module, and an SMA bending module as a distal bending tip. By synchronizing the motion of the stem, the bending module, and the torsion module, the robot is capable of tip articulation within the brain to remove hemorrhage effectively through suction and electrocauterization. In addition, a skull-mounted robotic headframe has been developed based on a Stewart platform to manipulate the NICHE robot. The robotic catheter is developed by integrating multiple SMA bending modules with flexible braid reinforced tubing. Polymer 3D-printing is used to fabricate all the structural components due to its relatively low cost, short fabrication period, and capability of fabricating complicated structures with high accuracy. The developed surgical robotic systems have been thoroughly evaluated using phantom or cadaver models under computed tomography (CT) and/or magnetic resonance imaging (MRI) guidance. The imaging-guided experimental studies showed that the developed robotic systems consisting of smart actuation and sensing were compatible with CT and MR imaging.Ph.D

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Modeling, Control and Energy Efficiency of Underwater Snake Robots

    Get PDF
    This thesis is mainly motivated by the attribute of the snake robots that they are able to move over land as well as underwater while the physiology of the robot remains the same. This adaptability to different motion demands depending on the environment is one of the main characteristics of the snake robots. In particular, this thesis targets several interesting aspects regarding the modeling, control and energy efficiency of the underwater snake robots. This thesis addresses the problem of modeling the hydrodynamic effects with an analytical perspective and a primary objective to conclude in a closed-form solution for the dynamic model of an underwater snake robot. Two mathematical models of the kinematics and dynamics of underwater snake robots swimming in virtual horizontal and vertical planes aimed at control design are presented. The presented models are derived in a closed-form and can be utilized in modern modelbased control schemes. In addition, these proposed models comprise snake robots moving both on land and in water which makes the model applicable for unified control methods for amphibious snake robots moving both on land and in water. The third model presented in this thesis is based on simplifying assumptions in order to derive a control-oriented model of an underwater snake robot moving in a virtual horizontal plane that is well-suited for control design and stability analysis. The models are analysed using several techniques. An extensive analysis of the model of a fully immersed underwater snake robot moving in a virtual horizontal plane is conducted. Based on this analysis, a set of essential properties that characterize the overall motion of underwater snake robots is derived. An averaging analysis reveals new fundamental properties of underwater snake robot locomotion that are useful from a motion planning perspective. In this thesis, both the motion analysis and control strategies are conducted based on a general sinusoidal motion pattern which can be used for a broad class of motion patterns including lateral undulation and eel-like motion. This thesis proposes and experimentally validates solutions to the path following control problem for biologically inspired swimming snake robots. In particular, line-of-sight (LOS) and integral line-of-sight (I-LOS) guidance laws, which are combined with a sinusoidal gait pattern and a directional controller that steers the robot towards and along the desired path are proposed. An I-LOS path following controller for steering an underwater snake robot along a straight line path in the presence of ocean currents of unknown direction and magnitude is presented and by using a Poincaré map, it is shown that all state variables of an underwater snake robot, except for the position along the desired path, trace out an exponentially stable periodic orbit. Moreover, this thesis presents the combined use of an artificial potential fields-based path planner with a new waypoint guidance strategy for steering an underwater snake robot along a path defined by waypoints interconnected by straight lines. The waypoints are derived by using a path planner based on the artificial potential field method in order to also address the obstacle avoidance problem. Furthermore, this thesis considers the energy efficiency of underwater snake robots. In particular, the relationship between the parameters of the gait patterns, the forward velocity and the energy consumption for the different motion patterns for underwater snake robots is investigated. Based on simulation results, this thesis presents empirical rules to choose the values for the parameters of the motion gait pattern of underwater snake robots. The experimental results support the derived properties regarding the relationship between the gait parameters and the power consumption both for lateral undulation and eel-like motion patterns. Moreover, comparison results are obtained for the total energy consumption and the cost of transportation of underwater snake robots and remotely operated vehicles (ROVs). Furthermore, in this thesis a multi-objective optimization problem is developed with the aim of maximizing the achieved forward velocity of the robot and minimizing the corresponding average power consumption of the system

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    NASA Tech Briefs, July/August 1987

    Get PDF
    Topics include: NASA TU Services; New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Fabrication Technology; Machinery; Mathematics and Information Sciences; Life Sciences

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Proceedings of the 3rd Annual Conference on Aerospace Computational Control, volume 1

    Get PDF
    Conference topics included definition of tool requirements, advanced multibody component representation descriptions, model reduction, parallel computation, real time simulation, control design and analysis software, user interface issues, testing and verification, and applications to spacecraft, robotics, and aircraft
    corecore