2,237 research outputs found

    Pointwise tube formulas for fractal sprays and self-similar tilings with arbitrary generators

    Get PDF
    In a previous paper by the first two authors, a tube formula for fractal sprays was obtained which also applies to a certain class of self-similar fractals. The proof of this formula uses distributional techniques and requires fairly strong conditions on the geometry of the tiling (specifically, the inner tube formula for each generator of the fractal spray is required to be polynomial). Now we extend and strengthen the tube formula by removing the conditions on the geometry of the generators, and also by giving a proof which holds pointwise, rather than distributionally. Hence, our results for fractal sprays extend to higher dimensions the pointwise tube formula for (1-dimensional) fractal strings obtained earlier by Lapidus and van Frankenhuijsen. Our pointwise tube formulas are expressed as a sum of the residues of the "tubular zeta function" of the fractal spray in Rd\mathbb{R}^d. This sum ranges over the complex dimensions of the spray, that is, over the poles of the geometric zeta function of the underlying fractal string and the integers 0,1,...,d0,1,...,d. The resulting "fractal tube formulas" are applied to the important special case of self-similar tilings, but are also illustrated in other geometrically natural situations. Our tube formulas may also be seen as fractal analogues of the classical Steiner formula.Comment: 43 pages, 13 figures. To appear: Advances in Mathematic

    Fractal Tube Formulas for Compact Sets and Relative Fractal Drums: Oscillations, Complex Dimensions and Fractality

    Full text link
    We establish pointwise and distributional fractal tube formulas for a large class of relative fractal drums in Euclidean spaces of arbitrary dimensions. A relative fractal drum (or RFD, in short) is an ordered pair (A,Ω)(A,\Omega) of subsets of the Euclidean space (under some mild assumptions) which generalizes the notion of a (compact) subset and that of a fractal string. By a fractal tube formula for an RFD (A,Ω)(A,\Omega), we mean an explicit expression for the volume of the tt-neighborhood of AA intersected by Ω\Omega as a sum of residues of a suitable meromorphic function (here, a fractal zeta function) over the complex dimensions of the RFD (A,Ω)(A,\Omega). The complex dimensions of an RFD are defined as the poles of its meromorphically continued fractal zeta function (namely, the distance or the tube zeta function), which generalizes the well-known geometric zeta function for fractal strings. These fractal tube formulas generalize in a significant way to higher dimensions the corresponding ones previously obtained for fractal strings by the first author and van Frankenhuijsen and later on, by the first author, Pearse and Winter in the case of fractal sprays. They are illustrated by several interesting examples. These examples include fractal strings, the Sierpi\'nski gasket and the 3-dimensional carpet, fractal nests and geometric chirps, as well as self-similar fractal sprays. We also propose a new definition of fractality according to which a bounded set (or RFD) is considered to be fractal if it possesses at least one nonreal complex dimension or if its fractal zeta function possesses a natural boundary. This definition, which extends to RFDs and arbitrary bounded subsets of RN\mathbb{R}^N the previous one introduced in the context of fractal strings, is illustrated by the Cantor graph (or devil's staircase) RFD, which is shown to be `subcritically fractal'.Comment: 90 pages (because of different style file), 5 figures, corrected typos, updated reference

    Approximate Euclidean Steiner trees

    Get PDF
    An approximate Steiner tree is a Steiner tree on a given set of terminals in Euclidean space such that the angles at the Steiner points are within a specified error e from 120 degrees. This notion arises in numerical approximations of minimum Steiner trees (W. D. Smith, Algorithmica, 7 (1992), 137–177). We investigate the worst-case relative error of the length of an approximate Steiner tree compared to the shortest tree with the same topology. Rubinstein, Weng and Wormald (J. Global Optim. 35 (2006), 573–592) conjectured that this relative error is at most linear in e, independent of the number of terminals. We verify their conjecture for the two-dimensional case as long as the error e is sufficiently small in terms of the number of terminals. We derive a lower bound linear in e for the relative error in the two-dimensional case when e is sufficiently small in terms of the number of terminals. We find improved estimates of the relative error for larger values of e, and calculate exact values in the plane for three and four terminals

    On computing Belyi maps

    Get PDF
    We survey methods to compute three-point branched covers of the projective line, also known as Belyi maps. These methods include a direct approach, involving the solution of a system of polynomial equations, as well as complex analytic methods, modular forms methods, and p-adic methods. Along the way, we pose several questions and provide numerous examples.Comment: 57 pages, 3 figures, extensive bibliography; English and French abstract; revised according to referee's suggestion

    Metrics for generalized persistence modules

    Full text link
    We consider the question of defining interleaving metrics on generalized persistence modules over arbitrary preordered sets. Our constructions are functorial, which implies a form of stability for these metrics. We describe a large class of examples, inverse-image persistence modules, which occur whenever a topological space is mapped to a metric space. Several standard theories of persistence and their stability can be described in this framework. This includes the classical case of sublevelset persistent homology. We introduce a distinction between `soft' and `hard' stability theorems. While our treatment is direct and elementary, the approach can be explained abstractly in terms of monoidal functors.Comment: Final version; no changes from previous version. Published online Oct 2014 in Foundations of Computational Mathematics. Print version to appea
    • …
    corecore