800 research outputs found

    Analysis of a batch-service queue with variable service capacity, correlated customer types and generally distributed class-dependent service times

    Get PDF
    Queueing models with batch service have been studied frequently, for instance in the domain of telecommunications or manufacturing. Although the batch server's capacity may be variable in practice, only a few authors have included variable capacity in their models. We analyse a batch server with multiple customer classes and a variable service capacity that depends on both the number of waiting customers and their classes. The service times are generally distributed and class-dependent. These features complicate the analysis in a non-trivial way. We tackle it by examining the system state at embedded points, and studying the resulting Markov Chain. We first establish the joint probability generating function (pgf) of the service capacity and the number of customers left behind in the queue immediately after service initiation epochs. From this joint pgf, we extract the pgf for the number of customers in the queue and in the system respectively at service initiation epochs and departure epochs, and the pgf of the actual server capacity. Combined with additional techniques, we also obtain the pgf of the queue and system content at customer arrival epochs and random slot boundaries, and the pgf of the delay of a random customer. In the numerical experiments, we focus on the impact of correlation between the classes of consecutive customers, and on the influence of different service time distributions on the system performance. (C) 2019 Elsevier B.V. All rights reserved

    Effect of parameters on Geoa/Geob/1 Queues: theoretical analysis and simulation results

    Get PDF
    This paper analyzes a discrete-time Geoa/Geob/1 queuing system with batch arrivals of fixed size a , and batch services of fixed size b. Both arrivals and services occur randomly following a geometric distribution. The steady-state queue length distribution is obtained as the solution of a system of difference equations. Necessary and sufficient conditions are given for the system to be stationary. Besides, the uniqueness of the root of the characteristic polynomial in the interval (0, 1) is proven which is the only root needed for the computation of the theoretical solution with the proposed procedure. The theoretical results are compared with the ones observed in some simulations of the queuing system under different sets of parameters. The agreement of the results encourages the use of simulation for more complex systems. Finally, we explore the effect of parameters on the mean length of the queue as well as on the mean waiting time

    Queueing systems with periodic service

    Get PDF
    iv+149hlm.;23c
    • …
    corecore