26 research outputs found

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    Fuzzy Mathematics

    Get PDF
    This book provides a timely overview of topics in fuzzy mathematics. It lays the foundation for further research and applications in a broad range of areas. It contains break-through analysis on how results from the many variations and extensions of fuzzy set theory can be obtained from known results of traditional fuzzy set theory. The book contains not only theoretical results, but a wide range of applications in areas such as decision analysis, optimal allocation in possibilistics and mixed models, pattern classification, credibility measures, algorithms for modeling uncertain data, and numerical methods for solving fuzzy linear systems. The book offers an excellent reference for advanced undergraduate and graduate students in applied and theoretical fuzzy mathematics. Researchers and referees in fuzzy set theory will find the book to be of extreme value

    Acta Scientiarum Mathematicarum : Tomus XXX. Fasc. 3-4.

    Get PDF

    Maths, Logic and Language

    Get PDF
    A work on the philosophy of mathematics (2017) ‘Number’, such a simple idea, and yet it fascinated and absorbed the greatest proportion of human geniuses over centuries, not to mention the likes of Pythagoras, Euclid, Newton, Leibniz, Descartes and countless maths giants like Euler, Gauss and Hilbert, etc.. Einstein thought of pure maths as the poetry of logical ideas, the exactitude of which, although independent of experience, strangely seems to benefit the study of the objects of reality. And, interestingly as well as surprisingly we are nowhere near any clear understandings of numbers despite discoveries of many productive usages of numbers. This is - rightly or wrongly - a humble attempt to approach the subject from an angle hitherto unthought-of

    An Algorithmic Interpretation of Quantum Probability

    Get PDF
    The Everett (or relative-state, or many-worlds) interpretation of quantum mechanics has come under fire for inadequately dealing with the Born rule (the formula for calculating quantum probabilities). Numerous attempts have been made to derive this rule from the perspective of observers within the quantum wavefunction. These are not really analytic proofs, but are rather attempts to derive the Born rule as a synthetic a priori necessity, given the nature of human observers (a fact not fully appreciated even by all of those who have attempted such proofs). I show why existing attempts are unsuccessful or only partly successful, and postulate that Solomonoff's algorithmic approach to the interpretation of probability theory could clarify the problems with these approaches. The Sleeping Beauty probability puzzle is used as a springboard from which to deduce an objectivist, yet synthetic a priori framework for quantum probabilities, that properly frames the role of self-location and self-selection (anthropic) principles in probability theory. I call this framework "algorithmic synthetic unity" (or ASU). I offer no new formal proof of the Born rule, largely because I feel that existing proofs (particularly that of Gleason) are already adequate, and as close to being a formal proof as one should expect or want. Gleason's one unjustified assumption--known as noncontextuality--is, I will argue, completely benign when considered within the algorithmic framework that I propose. I will also argue that, to the extent the Born rule can be derived within ASU, there is no reason to suppose that we could not also derive all the other fundamental postulates of quantum theory, as well. There is nothing special here about the Born rule, and I suggest that a completely successful Born rule proof might only be possible once all the other postulates become part of the derivation. As a start towards this end, I show how we can already derive the essential content of the fundamental postulates of quantum mechanics, at least in outline, and especially if we allow some educated and well-motivated guesswork along the way. The result is some steps towards a coherent and consistent algorithmic interpretation of quantum mechanics

    The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences

    Get PDF
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. The second yields a strong, finitary, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under the interpretation. We situate our investigation within a broad analysis of quantification vis a vis: * Hilbert's epsilon-calculus * Goedel's omega-consistency * The Law of the Excluded Middle * Hilbert's omega-Rule * An Algorithmic omega-Rule * Gentzen's Rule of Infinite Induction * Rosser's Rule C * Markov's Principle * The Church-Turing Thesis * Aristotle's particularisation * Wittgenstein's perspective of constructive mathematics * An evidence-based perspective of quantification. By showing how these are formally inter-related, we highlight the fragility of both the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert's epsilon-calculus; and the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer's belief that the Law of the Excluded Middle is non-finitary. We then consider some consequences for mathematics, mathematics education, philosophy, and the natural sciences, of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical paradigms in all these disciplines
    corecore