216 research outputs found

    Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications

    Get PDF
    International audienceParameterization of computational domain is a key step in isogeometric analysis just as mesh generation is in finite element analysis. In this paper, we study the volume parameterization problem of multi-block computational domain in isogeometric version, i.e, how to generate analysis-suitable parameterization of the multi-block computational domain bounded by B-spline surfaces. Firstly, we show how to find good volume parameterization of single-block computational domain by solving a constraint optimization problem, in which the constraint condition is the injectivity sufficient conditions of B-spline volume parametrization, and the optimization term is the minimization of quadratic energy functions related to the first and second derivatives of B-spline volume parameterization. By using this method, the resulted volume parameterization has no self-intersections, and the isoparametric structure has good uniformity and orthogonality. Then we extend this method to the multi-block case, in which the continuity condition between the neighbor B-spline volume should be added to the constraint term. The effectiveness of the proposed method is illustrated by several examples based on three-dimensional heat conduction problem

    Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    Get PDF
    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach

    Volumetric Untrimming: Precise decomposition of trimmed trivariates into tensor products

    Full text link
    3D objects, modeled using Computer Aided Geometric Design tools, are traditionally represented using a boundary representation (B-rep), and typically use spline functions to parameterize these boundary surfaces. However, recent development in physical analysis, in isogeometric analysis (IGA) in specific, necessitates a volumetric parametrization of the interior of the object. IGA is performed directly by integrating over the spline spaces of the volumetric spline representation of the object. Typically, tensor-product B-spline trivariates are used to parameterize the volumetric domain. A general 3D object, that can be modeled in contemporary B-rep CAD tools, is typically represented using trimmed B-spline surfaces. In order to capture the generality of the contemporary B-rep modeling space, while supporting IGA needs, Massarwi and Elber (2016) proposed the use of trimmed trivariates volumetric elements. However, the use of trimmed geometry makes the integration process more difficult since integration over trimmed B-spline basis functions is a highly challenging task. In this work, we propose an algorithm that precisely decomposes a trimmed B-spline trivariate into a set of (singular only on the boundary) tensor-product B-spline trivariates, that can be utilized to simplify the integration process in IGA. The trimmed B-spline trivariate is first subdivided into a set of trimmed B\'ezier trivariates, at all its internal knots. Then, each trimmed B\'ezier trivariate, is decomposed into a set of mutually exclusive tensor-product B-spline trivariates, that precisely cover the entire trimmed domain. This process, denoted untrimming, can be performed in either the Euclidean space or the parametric space of the trivariate. We present examples on complex trimmed trivariates' based geometry, and we demonstrate the effectiveness of the method by applying IGA over the (untrimmed) results.Comment: 18 pages, 32 figures. Contribution accepted in International Conference on Geometric Modeling and Processing (GMP 2019
    • …
    corecore