2,493 research outputs found

    A Riemannian Trust Region Method for the Canonical Tensor Rank Approximation Problem

    Full text link
    The canonical tensor rank approximation problem (TAP) consists of approximating a real-valued tensor by one of low canonical rank, which is a challenging non-linear, non-convex, constrained optimization problem, where the constraint set forms a non-smooth semi-algebraic set. We introduce a Riemannian Gauss-Newton method with trust region for solving small-scale, dense TAPs. The novelty of our approach is threefold. First, we parametrize the constraint set as the Cartesian product of Segre manifolds, hereby formulating the TAP as a Riemannian optimization problem, and we argue why this parametrization is among the theoretically best possible. Second, an original ST-HOSVD-based retraction operator is proposed. Third, we introduce a hot restart mechanism that efficiently detects when the optimization process is tending to an ill-conditioned tensor rank decomposition and which often yields a quick escape path from such spurious decompositions. Numerical experiments show improvements of up to three orders of magnitude in terms of the expected time to compute a successful solution over existing state-of-the-art methods

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    The Structure of n-Point One-Loop Open Superstring Amplitudes

    Get PDF
    In this article we present the worldsheet integrand for one-loop amplitudes in maximally supersymmetric superstring theory involving any number n of massless open string states. The polarization dependence is organized into the same BRST invariant kinematic combinations which also govern the leading string correction to tree level amplitudes. The dimensions of the bases for both the kinematics and the associated worldsheet integrals is found to be the unsigned Stirling number S_3^{n-1} of first kind. We explain why the same combinatorial structures govern on the one hand finite one-loop amplitudes of equal helicity states in pure Yang Mills theory and on the other hand the color tensors at quadratic alpha prime order of the color dressed tree amplitude.Comment: 75 pp, 8 figs, harvmac TeX, v2: published versio

    Spectral proper orthogonal decomposition

    Get PDF
    The identification of coherent structures from experimental or numerical data is an essential task when conducting research in fluid dynamics. This typically involves the construction of an empirical mode base that appropriately captures the dominant flow structures. The most prominent candidates are the energy-ranked proper orthogonal decomposition (POD) and the frequency ranked Fourier decomposition and dynamic mode decomposition (DMD). However, these methods fail when the relevant coherent structures occur at low energies or at multiple frequencies, which is often the case. To overcome the deficit of these "rigid" approaches, we propose a new method termed Spectral Proper Orthogonal Decomposition (SPOD). It is based on classical POD and it can be applied to spatially and temporally resolved data. The new method involves an additional temporal constraint that enables a clear separation of phenomena that occur at multiple frequencies and energies. SPOD allows for a continuous shifting from the energetically optimal POD to the spectrally pure Fourier decomposition by changing a single parameter. In this article, SPOD is motivated from phenomenological considerations of the POD autocorrelation matrix and justified from dynamical system theory. The new method is further applied to three sets of PIV measurements of flows from very different engineering problems. We consider the flow of a swirl-stabilized combustor, the wake of an airfoil with a Gurney flap, and the flow field of the sweeping jet behind a fluidic oscillator. For these examples, the commonly used methods fail to assign the relevant coherent structures to single modes. The SPOD, however, achieves a proper separation of spatially and temporally coherent structures, which are either hidden in stochastic turbulent fluctuations or spread over a wide frequency range

    Spacetime-Free Approach to Quantum Theory and Effective Spacetime Structure

    Get PDF
    Motivated by hints of the effective emergent nature of spacetime structure, we formulate a spacetime-free algebraic framework for quantum theory, in which no a priori background geometric structure is required. Such a framework is necessary in order to study the emergence of effective spacetime structure in a consistent manner, without assuming a background geometry from the outset. Instead, the background geometry is conjectured to arise as an effective structure of the algebraic and dynamical relations between observables that are imposed by the background statistics of the system. Namely, we suggest that quantum reference states on an extended observable algebra, the free algebra generated by the observables, may give rise to effective spacetime structures. Accordingly, perturbations of the reference state lead to perturbations of the induced effective spacetime geometry. We initiate the study of these perturbations, and their relation to gravitational phenomena
    corecore