968,986 research outputs found

    A new tool for the performance analysis of massively parallel computer systems

    Full text link
    We present a new tool, GPA, that can generate key performance measures for very large systems. Based on solving systems of ordinary differential equations (ODEs), this method of performance analysis is far more scalable than stochastic simulation. The GPA tool is the first to produce higher moment analysis from differential equation approximation, which is essential, in many cases, to obtain an accurate performance prediction. We identify so-called switch points as the source of error in the ODE approximation. We investigate the switch point behaviour in several large models and observe that as the scale of the model is increased, in general the ODE performance prediction improves in accuracy. In the case of the variance measure, we are able to justify theoretically that in the limit of model scale, the ODE approximation can be expected to tend to the actual variance of the model

    Workspace and Kinematic Analysis of the VERNE machine

    Get PDF
    This paper describes the workspace and the inverse and direct kinematic analysis of the VERNE machine, a serial/parallel 5-axis machine tool designed by Fatronik for IRCCyN. This machine is composed of a three-degree-of-freedom (DOF) parallel module and a two-DOF serial tilting table. The parallel module consists of a moving platform that is connected to a fixed base by three non-identical legs. This feature involves (i) a simultaneous combination of rotation and translation for the moving platform, which is balanced by the tilting table and (ii) workspace whose shape and volume vary as a function of the tool length. This paper summarizes results obtained in the context of the European projects NEXT ("Next Generation of Productions Systems")

    Automatic Detection of Performance Anomalies in Task-Parallel Programs

    Full text link
    To efficiently exploit the resources of new many-core architectures, integrating dozens or even hundreds of cores per chip, parallel programming models have evolved to expose massive amounts of parallelism, often in the form of fine-grained tasks. Task-parallel languages, such as OpenStream, X10, Habanero Java and C or StarSs, simplify the development of applications for new architectures, but tuning task-parallel applications remains a major challenge. Performance bottlenecks can occur at any level of the implementation, from the algorithmic level (e.g., lack of parallelism or over-synchronization), to interactions with the operating and runtime systems (e.g., data placement on NUMA architectures), to inefficient use of the hardware (e.g., frequent cache misses or misaligned memory accesses); detecting such issues and determining the exact cause is a difficult task. In previous work, we developed Aftermath, an interactive tool for trace-based performance analysis and debugging of task-parallel programs and run-time systems. In contrast to other trace-based analysis tools, such as Paraver or Vampir, Aftermath offers native support for tasks, i.e., visualization, statistics and analysis tools adapted for performance debugging at task granularity. However, the tool currently does not provide support for the automatic detection of performance bottlenecks and it is up to the user to investigate the relevant aspects of program execution by focusing the inspection on specific slices of a trace file. In this paper, we present ongoing work on two extensions that guide the user through this process.Comment: Presented at 1st Workshop on Resource Awareness and Adaptivity in Multi-Core Computing (Racing 2014) (arXiv:1405.2281

    Using fast and accurate simulation to explore hardware/software trade-offs in the multi-core era

    Get PDF
    Writing well-performing parallel programs is challenging in the multi-core processor era. In addition to achieving good per-thread performance, which in itself is a balancing act between instruction-level parallelism, pipeline effects and good memory performance, multi-threaded programs complicate matters even further. These programs require synchronization, and are affected by the interactions between threads through sharing of both processor resources and the cache hierarchy. At the Intel Exascience Lab, we are developing an architectural simulator called Sniper for simulating future exascale-era multi-core processors. Its goal is twofold: Sniper should assist hardware designers to make design decisions, while simultaneously providing software designers with a tool to gain insight into the behavior of their algorithms and allow for optimization. By taking architectural features into account, our simulator can provide more insight into parallel programs than what can be obtained from existing performance analysis tools. This unique combination of hardware simulator and software performance analysis tool makes Sniper a useful tool for a simultaneous exploration of the hardware and software design space for future high-performance multi-core systems

    Exploiting hybrid parallelism in the kinematic analysis of multibody systems based on group equations

    Get PDF
    Computational kinematics is a fundamental tool for the design, simulation, control, optimization and dynamic analysis of multibody systems. The analysis of complex multibody systems and the need for real time solutions requires the development of kinematic and dynamic formulations that reduces computational cost, the selection and efficient use of the most appropriated solvers and the exploiting of all the computer resources using parallel computing techniques. The topological approach based on group equations and natural coordinates reduces the computation time in comparison with well-known global formulations and enables the use of parallelism techniques which can be applied at different levels: simultaneous solution of equations, use of multithreading routines, or a combination of both. This paper studies and compares these topological formulation and parallel techniques to ascertain which combination performs better in two applications. The first application uses dedicated systems for the real time control of small multibody systems, defined by a few number of equations and small linear systems, so shared-memory parallelism in combination with linear algebra routines is analyzed in a small multicore and in Raspberry Pi. The control of a Stewart platform is used as a case study. The second application studies large multibody systems in which the kinematic analysis must be performed several times during the design of multibody systems. A simulator which allows us to control the formulation, the solver, the parallel techniques and size of the problem has been developed and tested in more powerful computational systems with larger multicores and GPU.This work was supported by the Spanish MINECO, as well as European Commission FEDER funds, under grant TIN2015-66972-C5-3-

    Automating the parallel processing of fluid and structural dynamics calculations

    Get PDF
    The NASA Lewis Research Center is actively involved in the development of expert system technology to assist users in applying parallel processing to computational fluid and structural dynamic analysis. The goal of this effort is to eliminate the necessity for the physical scientist to become a computer scientist in order to effectively use the computer as a research tool. Programming and operating software utilities have previously been developed to solve systems of ordinary nonlinear differential equations on parallel scalar processors. Current efforts are aimed at extending these capabilities to systems of partial differential equations, that describe the complex behavior of fluids and structures within aerospace propulsion systems. This paper presents some important considerations in the redesign, in particular, the need for algorithms and software utilities that can automatically identify data flow patterns in the application program and partition and allocate calculations to the parallel processors. A library-oriented multiprocessing concept for integrating the hardware and software functions is described

    ParaPlan: A Tool for Parallel Reachability Analysis of Planar Polygonal Differential Inclusion Systems

    Get PDF
    Andrei Sandler, and Olga Tveretina, ‘ParaPlan: A Tool for Parallel Reachability Analysis of Planar Polygonal Differential Inclusion Systems’, in Patricia Bouyer, Andrea Orlandini and Pierluigi San Pietro, eds. Proceedings Eight International Symposium on Games, Automata, Logics and Formal Verification (GandALF 2017), Rome, Italy, 20-22 September 2017, Electronic Proceedings in Theoretical Computer Science, Vol. 256: 283-296, September 2017. © 2017 The Author(s). This work is licensed under the Creative Commons Attribution License CC BY 4.0 https://creativecommons.org/licenses/by/4.0/We present the ParaPlan tool which provides the reachability analysis of planar hybrid systems defined by differential inclusions (SPDI). It uses the parallelized and optimized version of the algorithm underlying the SPeeDI tool. The performance comparison demonstrates the speed-up of up to 83 times with respect to the sequential implementation on various benchmarks. Some of the benchmarks we used are randomly generated with the novel approach based on the partitioning of the plane with Voronoi diagrams

    Performance Debugging and Tuning using an Instruction-Set Simulator

    Get PDF
    Instruction-set simulators allow programmers a detailed level of insight into, and control over, the execution of a program, including parallel programs and operating systems. In principle, instruction set simulation can model any target computer and gather any statistic. Furthermore, such simulators are usually portable, independent of compiler tools, and deterministic-allowing bugs to be recreated or measurements repeated. Though often viewed as being too slow for use as a general programming tool, in the last several years their performance has improved considerably. We describe SIMICS, an instruction set simulator of SPARC-based multiprocessors developed at SICS, in its rôle as a general programming tool. We discuss some of the benefits of using a tool such as SIMICS to support various tasks in software engineering, including debugging, testing, analysis, and performance tuning. We present in some detail two test cases, where we've used SimICS to support analysis and performance tuning of two applications, Penny and EQNTOTT. This work resulted in improved parallelism in, and understanding of, Penny, as well as a performance improvement for EQNTOTT of over a magnitude. We also present some early work on analyzing SPARC/Linux, demonstrating the ability of tools like SimICS to analyze operating systems

    Computing fuzzy rough approximations in large scale information systems

    Get PDF
    Rough set theory is a popular and powerful machine learning tool. It is especially suitable for dealing with information systems that exhibit inconsistencies, i.e. objects that have the same values for the conditional attributes but a different value for the decision attribute. In line with the emerging granular computing paradigm, rough set theory groups objects together based on the indiscernibility of their attribute values. Fuzzy rough set theory extends rough set theory to data with continuous attributes, and detects degrees of inconsistency in the data. Key to this is turning the indiscernibility relation into a gradual relation, acknowledging that objects can be similar to a certain extent. In very large datasets with millions of objects, computing the gradual indiscernibility relation (or in other words, the soft granules) is very demanding, both in terms of runtime and in terms of memory. It is however required for the computation of the lower and upper approximations of concepts in the fuzzy rough set analysis pipeline. Current non-distributed implementations in R are limited by memory capacity. For example, we found that a state of the art non-distributed implementation in R could not handle 30,000 rows and 10 attributes on a node with 62GB of memory. This is clearly insufficient to scale fuzzy rough set analysis to massive datasets. In this paper we present a parallel and distributed solution based on Message Passing Interface (MPI) to compute fuzzy rough approximations in very large information systems. Our results show that our parallel approach scales with problem size to information systems with millions of objects. To the best of our knowledge, no other parallel and distributed solutions have been proposed so far in the literature for this problem
    • …
    corecore