21,776 research outputs found

    Designing Wireless Broadband Access for Energy Efficiency: Are Small Cells the Only Answer?

    Full text link
    The main usage of cellular networks has changed from voice to data traffic, mostly requested by static users. In this paper, we analyze how a cellular network should be designed to provide such wireless broadband access with maximal energy efficiency (EE). Using stochastic geometry and a detailed power consumption model, we optimize the density of access points (APs), number of antennas and users per AP, and transmission power for maximal EE. Small cells are of course a key technology in this direction, but the analysis shows that the EE improvement of a small-cell network saturates quickly with the AP density and then "massive MIMO" techniques can further improve the EE.Comment: Published at Small Cell and 5G Networks (SmallNets) Workshop, IEEE International Conference on Communications (ICC), 6 pages, 5 figures, 1 tabl

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs
    corecore