2,178 research outputs found

    Unifying Parsimonious Tree Reconciliation

    Full text link
    Evolution is a process that is influenced by various environmental factors, e.g. the interactions between different species, genes, and biogeographical properties. Hence, it is interesting to study the combined evolutionary history of multiple species, their genes, and the environment they live in. A common approach to address this research problem is to describe each individual evolution as a phylogenetic tree and construct a tree reconciliation which is parsimonious with respect to a given event model. Unfortunately, most of the previous approaches are designed only either for host-parasite systems, for gene tree/species tree reconciliation, or biogeography. Hence, a method is desirable, which addresses the general problem of mapping phylogenetic trees and covering all varieties of coevolving systems, including e.g., predator-prey and symbiotic relationships. To overcome this gap, we introduce a generalized cophylogenetic event model considering the combinatorial complete set of local coevolutionary events. We give a dynamic programming based heuristic for solving the maximum parsimony reconciliation problem in time O(n^2), for two phylogenies each with at most n leaves. Furthermore, we present an exact branch-and-bound algorithm which uses the results from the dynamic programming heuristic for discarding partial reconciliations. The approach has been implemented as a Java application which is freely available from http://pacosy.informatik.uni-leipzig.de/coresym.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Assessing the robustness of parsimonious predictions for gene neighborhoods from reconciled phylogenies

    Get PDF
    The availability of a large number of assembled genomes opens the way to study the evolution of syntenic character within a phylogenetic context. The DeCo algorithm, recently introduced by B{\'e}rard et al. allows the computation of parsimonious evolutionary scenarios for gene adjacencies, from pairs of reconciled gene trees. Following the approach pioneered by Sturmfels and Pachter, we describe how to modify the DeCo dynamic programming algorithm to identify classes of cost schemes that generates similar parsimonious evolutionary scenarios for gene adjacencies, as well as the robustness to changes to the cost scheme of evolutionary events of the presence or absence of specific ancestral gene adjacencies. We apply our method to six thousands mammalian gene families, and show that computing the robustness to changes to cost schemes provides new and interesting insights on the evolution of gene adjacencies and the DeCo model.Comment: Accepted, to appear in ISBRA - 11th International Symposium on Bioinformatics Research and Applications - 2015, Jun 2015, Norfolk, Virginia, United State

    The inference of gene trees with species trees

    Get PDF
    Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can co-exist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice-versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. In this article we review the various models that have been used to describe the relationship between gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree-species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a better basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree-species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution.Comment: Review article in relation to the "Mathematical and Computational Evolutionary Biology" conference, Montpellier, 201

    Algorithms For Phylogeny Reconstruction In a New Mathematical Model

    Get PDF
    The evolutionary history of a set of species is represented by a tree called phylogenetic tree or phylogeny. Its structure depends on precise biological assumptions about the evolution of species. Problems related to phylogeny reconstruction (i.e., finding a tree representation of information regarding a set of items) are widely studied in computer science. Most of these problems have found to be NP-hard. Sometimes they can solved polynomially if appropriate restrictions on the structure of the tree are fixed. This paper summarizes the most recent problems and results in phylogeny reconstruction, and introduces an innovative tree model, called Phylogenetic Parsimonious Tree, which is justified by significant biological hypothesis. Using PPT two problems are studied: the existence and the reconstruction of a tree both when sequences of characters and partial order on interspecies distances are given. We rove complexity results that confirm the hardness of this class of problems

    Evolutionary Inference via the Poisson Indel Process

    Full text link
    We address the problem of the joint statistical inference of phylogenetic trees and multiple sequence alignments from unaligned molecular sequences. This problem is generally formulated in terms of string-valued evolutionary processes along the branches of a phylogenetic tree. The classical evolutionary process, the TKF91 model, is a continuous-time Markov chain model comprised of insertion, deletion and substitution events. Unfortunately this model gives rise to an intractable computational problem---the computation of the marginal likelihood under the TKF91 model is exponential in the number of taxa. In this work, we present a new stochastic process, the Poisson Indel Process (PIP), in which the complexity of this computation is reduced to linear. The new model is closely related to the TKF91 model, differing only in its treatment of insertions, but the new model has a global characterization as a Poisson process on the phylogeny. Standard results for Poisson processes allow key computations to be decoupled, which yields the favorable computational profile of inference under the PIP model. We present illustrative experiments in which Bayesian inference under the PIP model is compared to separate inference of phylogenies and alignments.Comment: 33 pages, 6 figure
    • 

    corecore