28,328 research outputs found

    Hydra: An Adaptive--Mesh Implementation of PPPM--SPH

    Get PDF
    We present an implementation of Smoothed Particle Hydrodynamics (SPH) in an adaptive-mesh PPPM algorithm. The code evolves a mixture of purely gravitational particles and gas particles. The code retains the desirable properties of previous PPPM--SPH implementations; speed under light clustering, naturally periodic boundary conditions and accurate pairwise forces. Under heavy clustering the cycle time of the new code is only 2--3 times slower than for a uniform particle distribution, overcoming the principal disadvantage of previous implementations\dash a dramatic loss of efficiency as clustering develops. A 1000 step simulation with 65,536 particles (half dark, half gas) runs in one day on a Sun Sparc10 workstation. The choice of time integration scheme is investigated in detail. A simple single-step Predictor--Corrector type integrator is most efficient. A method for generating an initial distribution of particles by allowing a a uniform temperature gas of SPH particles to relax within a periodic box is presented. The average SPH density that results varies by ∼±1.3\sim\pm1.3\%. We present a modified form of the Layzer--Irvine equation which includes the thermal contribution of the gas together with radiative cooling. Tests of sound waves, shocks, spherical infall and collapse are presented. Appropriate timestep constraints sufficient to ensure both energy and entropy conservation are discussed. A cluster simulation, repeating Thomas andComment: 29 pp, uuencoded Postscrip

    Observational constraints on the types of cosmic strings

    Full text link
    This paper is aimed at setting observational limits to the number of cosmic strings (Nambu-Goto, Abelian-Higgs, semilocal) and other topological defects (textures). Radio maps of CMB anisotropy, provided by the space mission Planck for various frequencies, were filtered and then processed by the method of convolution with modified Haar functions (MHF) to search for cosmic string candidates. This method was designed to search for solitary strings, without additional assumptions about the presence of networks of such objects. The sensitivity of the MHF method is δT≈10μK\delta T \approx 10 \mu K in a background of δT≈100μK\delta T \approx 100 \mu K. The comparison of these with previously known results on search string network shows that strings can only be semilocal in an amount of 1÷51 \div 5, with the upper restriction on individual strings tension (linear density) of Gμ/c2≤7.36⋅10−7G\mu/c^2 \le 7.36 \cdot 10^{-7}. The texture model is also legal. There are no strings with Gμ/c2>7.36⋅10−7G\mu/c^2 > 7.36 \cdot 10^{-7}. However, comparison with the data for the search of non-Gaussian signals shows that the presence of several (up to 3) of Nambu-Goto strings is also possible. For Gμ/c2≤4.83⋅10−7G\mu/c^2 \le 4.83 \cdot 10^{-7} the MHF method is ineffective because of unverifiable spurious string candidates. Thus the existence of strings with tensions Gμ/c2≤4.83⋅10−7G\mu/c^2 \le 4.83 \cdot 10^{-7} is not prohibited but it is beyond the Planck data possibilities.Comment: 15 pages, 10 figures; accepted by the European Physical Journal

    Vetoes for Inspiral Triggers in LIGO Data

    Full text link
    Presented is a summary of studies by the LIGO Scientific Collaboration's Inspiral Analysis Group on the development of possible vetoes to be used in evaluation of data from the first two LIGO science data runs. Numerous environmental monitor signals and interferometer control channels have been analyzed in order to characterize the interferometers' performance. The results of studies on selected data segments are provided in this paper. The vetoes used in the compact binary inspiral analyses of LIGO's S1 and S2 science data runs are presented and discussed.Comment: Submitted to Classical and Quantum Gravity for the GWDAW-8 proceeding

    Generation of scalar-tensor gravity effects in equilibrium state boson stars

    Get PDF
    Boson stars in zero-, one-, and two-node equilibrium states are modeled numerically within the framework of Scalar-Tensor Gravity. The complex scalar field is taken to be both massive and self-interacting. Configurations are formed in the case of a linear gravitational scalar coupling (the Brans-Dicke case) and a quadratic coupling which has been used previously in a cosmological context. The coupling parameters and asymptotic value for the gravitational scalar field are chosen so that the known observational constraints on Scalar-Tensor Gravity are satisfied. It is found that the constraints are so restrictive that the field equations of General Relativity and Scalar-Tensor gravity yield virtually identical solutions. We then use catastrophe theory to determine the dynamically stable configurations. It is found that the maximum mass allowed for a stable state in Scalar-Tensor gravity in the present cosmological era is essentially unchanged from that of General Relativity. We also construct boson star configurations appropriate to earlier cosmological eras and find that the maximum mass for stable states is smaller than that predicted by General Relativity, and the more so for earlier eras. However, our results also show that if the cosmological era is early enough then only states with positive binding energy can be constructed.Comment: 20 pages, RevTeX, 11 figures, to appear in Class. Quantum Grav., comments added, refs update

    The Galactic Exoplanet Survey Telescope (GEST)

    Full text link
    The Galactic Exoplanet Survey Telescope (GEST) will observe a 2 square degree field in the Galactic bulge to search for extra-solar planets using a gravitational lensing technique. This gravitational lensing technique is the only method employing currently available technology that can detect Earth-mass planets at high signal-to-noise, and can measure the frequency of terrestrial planets as a function of Galactic position. GEST's sensitivity extends down to the mass of Mars, and it can detect hundreds of terrestrial planets with semi-major axes ranging from 0.7 AU to infinity. GEST will be the first truly comprehensive survey of the Galaxy for planets like those in our own Solar System.Comment: 17 pages with 13 figures, to be published in Proc. SPIE vol 4854, "Future EUV-UV and Visible Space Astrophysics Missions and Instrumentation
    • …
    corecore