7 research outputs found

    Analysis on visual signal based on the effect of eye massaging device using wavelet transform

    Get PDF
    This study has been conducted to examine the effectiveness of the eye massaging device to reduce massive amount of eyesight problem. The electrical activity of the muscles surrounding the eyes is recorded by using Neurofax EEG-9200 machine. Electroencephalography (EEG) is a process to determine the brain signal, while Electrooculography (EOG) is used to measure the biopotential produced by the changes in eye position and eye movement occurred. The conventional electrode setting (also called 10-20) system is applied on the scalp electrodes for EEG to record the brain signals. While five electrodes on the forehead is used to record EOG signals. Channel O1 and O2 that act as visual processing is selected in order to record EEG signals. The signal is analyzed using Wavelet Transform and the useful parameter, Energy of Approximation (Ea) was extracted. In this study, t-test analysis is used to validate the differences of data produced before and after using eye massaging device. Based on the results, the average value collected for EEG signals before using the eye massaging device has been decreased for both channel with the different (O1: 5.083, O2: 3.385). Thus, it is proved that the eye massaging device exhibit difference for each movement tested

    An application of steady state visual evoked potential brain-computer interface as an augmentative alternative communication system for individuals with severe motor impairments

    Full text link
    Thesis (M.S.)--Boston UniversityPURPOSE: Tbis study will look at the feasibility of Steady State Visually Evoked Potential (SSVEP) brain-computer interfaces (BCI) as possible augmentative and alternative communication (AAC) systems for individuals who are severely disabled such as those with Locked-in Syndrome (LIS). The study intended to test whether there is a difference in BCI performance between healthy and impaired individuals and why. Specifically, the study focused on the operational competency, such as ocular motor function, ofthe impaired individuals as it relates to performance. Further, the study also attempted to explore the contributions of environmental distracts to performance. The results oftbis investigation will provide insights valuable for future BCI-AAC development and the potential for their acceptance by the AAC and LIS communities. METHODS: The study consisted of 12 healthy adults and 5 severely disabled adults presenting with 4 different neurological disorders. Tbis study consisted to two parts. The first part was an assessment ofthe communicative abilities ofthe impaired subjects. The assessment was conducted through a video recorded interview, from which communication rates were calculated and behavioral observations of each impaired subject's communicative behaviors were made with a focus on ocular motor behavior. The second part involved testing of the SSVEP BCI. All subjects performed selection tasks from a choice of four directions in the UDLR task. For each trial, the subject was prompted to attend to a specific SSVEP stimulus. Each stimulus was selected at random to flash at one of four frequencies (12, 13, 14, or 15Hz) (Lorenz, 2012). After 4 seconds, the BCI predicted the attended cue direction (Up, Down, Left, Right). If the prediction was correct, a "thumbs-up" feedback signal was shown to the subject; a "thumbs-down" was shown for incorrect predictions. The UDLR data collected for each trial consisted of a table with two columns: one column recorded the ground truth, which was the target direction, and one column recorded the decoded, or classified direction. Two additional columns were added. One column indicated whether the subject had any ocular motor impairment with a 1 or 0. A binary logistic regression was completed to investigate the main effect of age, subject group, and ocular motor impairment with respect to BCI accuracy. Additionally, observations regarding the affect of environmental distractions were also made. [TRUNCATED

    Designing Intra-Hand Input for Wearable Devices

    Get PDF
    Department of Biomedical Engineering (Human Factors Engineering)Current trends toward the miniaturization of digital technology have enabled the development of versatile smart wearable devices. Powered by capable processors and equipped with advanced sensors, this novel device category can substantially impact application areas as diverse as education, health care, and entertainment. However, despite their increasing sophistication and potential, input techniques for wearable devices are still relatively immature and often fail to reflect key practical constraints in this design space. For example, on-device touch surfaces, such as the temple touchpad of Google Glass, are typically small and out-of-sight, thus limiting their expressivity capability. Furthermore, input techniques designed specifically for Head-Mounted Displays (HMDs), such as free-hand (e.g., Microsoft Hololens) or dedicated controller (e.g., Oculus VR) tracking, exhibit low levels of social acceptability (e.g., large-scale hand gestures are arguably unsuited for use in public settings) and are vulnerable to cause fatigue (e.g., gorilla arm) in long-term use. Such factors limit their real-world applicability. In addition to these difficulties, typical wearable use scenarios feature various situational impairments, such as encumbered use (e.g., having one hand busy), mobile use (e.g., while walking), and eyes-free use (e.g., while responding to real-world stimuli). These considerations are weakly catered for by the design of current wearable input systems. This dissertation seeks to address these problems by exploring the design space of intra-hand input, which refers to small-scale actions made within a single hand. In particular, through a hand-mounted sensing system, intra-hand input can include diverse input surfaces, such as between fingers (e.g., fingers-to-thumb and thumb-to-fingers inputs) to body surfaces (e.g., hand-to-face inputs). Here, I identify several advantages of this form of hand input, as follows. First, the hand???s high dexterity can enable comfortable, quick, accurate, and expressive inputs of various types (e.g., tap, flick, or swipe touches) at multiple locations (e.g., on each of the five fingers or other body surfaces). In addition, many viable forms of these input movements are small-scale, promising low fatigue over long-term use and basic actions that are discrete and socially acceptable. Finally, intra-hand input is inherently robust to many common situational impairments, such as use that take place in eyes-free, public, or mobile settings. Consolidating these prospective advantages, the general claim of this dissertation is that intra-hand input is an expressive and effective modality for interaction with wearable devices such as HMDs. The dissertation seeks to demonstrate that this claim holds in a range of wearable scenarios and applications, and with measures of both objective performance (e.g., time, errors, accuracy) and subjective experience (e.g., comfort or social acceptability). Specifically, in this dissertation, I verify the referred general claim by demonstrating it in three separate scenarios. I begin by exploring the design space of intra-hand input by studying the specific case of touches to a set of five touch-sensitive five nails. To this end, I first conduct an exploratory design process in which a large set of 144 input actions are generated, followed by two empirical studies on comfort and performance that refine such a large set to 29 viable inputs. The results of this work indicate that nail touches are an accessible, expressive, and comfortable form of input. Based on these results, in the second scenario, I focused on text entry in a mobile setting with the same nail form-factor system. Through a comparative empirical study involving both sitting and mobile conditions, nail-based touches were confirmed to be robust to physical disturbance while mobile. A follow-up word repetition study indicated that text entry studies of up to 33.1 WPM could be achieved when key layouts were appropriately optimized for the nail form factor. These results reveal that intra-hand inputs are suitable for complex input tasks in mobile contexts. In the third scenario, I explored an alternative form of intra-hand input that relies on small-scale hand touches to the face via the lens of social acceptability. This scenario is especially valuable for multi-wearables usage contexts, as single hand-mounted systems can enable input from a proximate distance for each scattered device around the body (e.g., hand-to-face input for smartglass or ear-worn device and inter-finger input with wristwatch usage posture for smartwatch). In fact, making an input on the face can attract unwanted, undue attention from the public. Thus, the design stage of this work involved elicitation of diverse unobtrusive and socially acceptable hand-to-face actions from users, that is, outcomes that were then refined into five design strategies that can achieve socially acceptable input in this setting. Follow-up studies on a prototype that instantiates these strategies validate their effectiveness and provide a characterization of the speed and accuracy achieved by the user with each system. I argue that this spectrum of metrics, recorded over a diverse set of scenarios, supports the general claim that intra-hand inputs for wearable devices can be expressively and effectively operated in terms of objective performance (e.g., time, errors, accuracy) and subjective experience (e.g., comfort or social acceptability) in common wearable use scenarios, such as when mobile and in public. I conclude with a discussion of the contributions of this work, scope for further developments, and the design issues that need to be considered by researchers, designers, and developers who seek to implement these types of input. This discussion spans diverse considerations, such as suitable tracking technologies, appropriate body regions, viable input types, and effective design processes. Through this discussion, this dissertation seeks to provide practical guidance to support and accelerate further research efforts aimed at achieving real-world systems that realize the potential of intra-hand input for wearables.clos

    Bioelectrical User Authentication

    Get PDF
    There has been tremendous growth of mobile devices, which includes mobile phones, tablets etc. in recent years. The use of mobile phone is more prevalent due to their increasing functionality and capacity. Most of the mobile phones available now are smart phones and better processing capability hence their deployment for processing large volume of information. The information contained in these smart phones need to be protected against unauthorised persons from getting hold of personal data. To verify a legitimate user before accessing the phone information, the user authentication mechanism should be robust enough to meet present security challenge. The present approach for user authentication is cumbersome and fails to consider the human factor. The point of entry mechanism is intrusive which forces users to authenticate always irrespectively of the time interval. The use of biometric is identified as a more reliable method for implementing a transparent and non-intrusive user authentication. Transparent authentication using biometrics provides the opportunity for more convenient and secure authentication over secret-knowledge or token-based approaches. The ability to apply biometrics in a transparent manner improves the authentication security by providing a reliable way for smart phone user authentication. As such, research is required to investigate new modalities that would easily operate within the constraints of a continuous and transparent authentication system. This thesis explores the use of bioelectrical signals and contextual information for non-intrusive approach for authenticating a user of a mobile device. From fusion of bioelectrical signals and context awareness information, three algorithms where created to discriminate subjects with overall Equal Error Rate (EER of 3.4%, 2.04% and 0.27% respectively. Based vii | P a g e on the analysis from the multi-algorithm implementation, a novel architecture is proposed using a multi-algorithm biometric authentication system for authentication a user of a smart phone. The framework is designed to be continuous, transparent with the application of advanced intelligence to further improve the authentication result. With the proposed framework, it removes the inconvenience of password/passphrase etc. memorability, carrying of token or capturing a biometric sample in an intrusive manner. The framework is evaluated through simulation with the application of a voting scheme. The simulation of the voting scheme using majority voting improved to the performance of the combine algorithm (security level 2) to FRR of 22% and FAR of 0%, the Active algorithm (security level 2) to FRR of 14.33% and FAR of 0% while the Non-active algorithm (security level 3) to FRR of 10.33% and FAR of 0%

    Endokrinní a metabolické aspekty vybraných spánkový ch poruch

    Get PDF
    Endokrinní a metabolické aspekty vybraných spánkových poruch MUDr. Zuzana Vimmerová Lattová Abstrakt: Výsledky epidemiologických a experimentálních studií naznačují negativní vliv krátké doby trvání spánku nebo přerušovaného spánku na glukózovou toleranci. Doposud však nebyly provedeny žádné srovnávací studie glukózového metabolismu u klinických spánkových poruch. Dysfunkce HPA osy může hrát stěžejní roli v patofysiologii některých spánkových poruch, u jiných poruch spánku může být sekundární k narušenému spánku. Dysfunkce HPA osy je také považována za možnou příčinu poruch glukózové tolerance spojených s poruchami spánku. Nicméně údaje o funkci HPA osy u spánkových poruch jsou skrovné a konfliktní. Vyšetřili jsme celkem 25 pacientů s obstrukční spánkovou apnoe (OSA), 18 pacientů se syndromem neklidných nohou (RLS), 21 pacientů s primární insomnií a porovnali je s 33 zdravými kontrolami. Provedli jsme orální glukózový toleranční test (OGTT) a hodnotili další parametry metabolismu sacharidů. Dynamická odezva HPA systému byla hodnocena DEX- CRH-testem, který spojuje supresi (dexametazon) a stimulaci (CRH) HPA osy. Zaznamenali jsme vyšší výskyt poruch glukózové tolerance u pacientů s OSA (OR: 4.9) a RLS (OR: 4.7) ve srovnání s kontrolní skupinou, nikoli však u primárních insomniaků. Kromě toho byly u těchto...Endocrine and Metabolic Aspects of Various Sleep Disorders MUDr. Zuzana Vimmerová Lattová Abstract: Recent epidemiological and experimental data suggest a negative influence of shortened or disturbed night sleep on glucose tolerance. However, no comparative studies of glucose metabolism have been conducted in clinical sleep disorders. Dysfunction of the HPA axis may play a causative role in some sleep disorders and in other sleep disorders it may be secondary to the sleep disorder. Moreover, dysfunction of the HPA axis is regarded as a possible causative factor for the impaired glucose sensitivity associated with disturbed sleep. However, data on HPA system activity in sleep disorders are sparse and conflicting. We studied 25 obstructive sleep apnea (OSA) patients, 18 restless legs syndrome (RLS) patients, 21 patients with primary insomnia and compared them to 33 healthy controls. We performed oral glucose tolerance test and assessed additional parameters of glucose metabolism. The dynamic response of the HPA system was assessed by the DEX-CRH-test which combines suppression (dexamethasone) and stimulation (CRH) of the stress hormone system. Compared to controls, increased rates of impaired glucose tolerance were found in OSA (OR: 4.9) and RLS (OR: 4.7), but not in primary insomnia. In addition, HbA1c...Department of Psychiatry First Faculty of Medicine and General University Hospital in PraguePsychiatrická klinika 1. LF a VFN v PrazeFirst Faculty of Medicine1. lékařská fakult
    corecore