24 research outputs found

    Dual-Satellite Source Geolocation with Time and Frequency Offsets and Satellite Location Errors

    Get PDF
    This paper considers locating a static source on Earth using the time difference of arrival (TDOA) and frequency difference of arrival (FDOA) measurements obtained by a dual-satellite geolocation system. The TDOA and FDOA from the source are subject to unknown time and frequency offsets because the two satellites are imperfectly time-synchronized or frequency-locked. The satellite locations are not known accurately as well. To make the source position identifiable and mitigate the effect of satellite location errors, calibration stations at known positions are used. Achieving the maximum likelihood (ML) geolocation performance usually requires jointly estimating the source position and extra variables (i.e., time and frequency offsets as well as satellite locations), which is computationally intensive. In this paper, a novel closed-form geolocation algorithm is proposed. It first fuses the TDOA and FDOA measurements from the source and calibration stations to produce a single pair of TDOA and FDOA for source geolocation. This measurement fusion step eliminates the time and frequency offsets while taking into account the presence of satellite location errors. The source position is then found via standard TDOA-FDOA geolocation. The developed algorithm has low complexity and performance analysis shows that it attains the Cramér-Rao lower bound (CRLB) under Gaussian noises and mild conditions. Simulations using a challenging scenario with a short-baseline dual-satellite system verify the theoretical developments and demonstrate the good performance of the proposed algorithm

    An Analysis of Radio-Frequency Geolocation Techniques for Satellite Systems Design

    Get PDF
    This research 1) evaluates the effectiveness of CubeSat radio-frequency geolocation and 2) analyzes the sensitivity of different RF algorithms to system parameters. A MATLAB simulation is developed to assess geolocation accuracy for variable system designs and techniques (AOA, TDOA, T/FDOA). An unconstrained maximum likelihood estimator (MLE) and three different digital elevation models (DEM) are utilized as the surface of the Earth constraint to improve geolocation accuracy. The results presented show the effectiveness of the MLE and DEM techniques, the sensitivity of AOA, TDOA, and T/FDOA algorithms, and the system level performance of a CubeSat geolocation cluster in a 500km circular orbit

    Evaluation of time difference of arrival (Tdoa) networks performance for launcher vehicles and spacecraft tracking

    Get PDF
    Time Difference of Arrival (TDOA) networks could support spacecraft orbit determination or near-space (launcher and suborbital) vehicle tracking for an increased number of satellite launches and space missions in the near future. The evaluation of the geometry of TDOA networks could involve the dilution of precision (DOP), but this parameter is related to a single position of the target, while the positioning accuracy of the network with targets in the whole celestial vault should be evaluated. The paper presents the derivation of the MDOP (minimum dilution of precision), a parameter that can be used for evaluating the performance of TDOA networks for spacecraft tracking and orbit determination. The MDOP trend with respect to distance, number of stations and target altitude is reported in the paper, as well as examples of applications for network performance evaluation or time precision requirement definitions. The results show how an increase in the baseline enables the inclusion of more impactive improvements on the MDOP and the mean error than an increase in the number of stations. The target altitude is demonstrated as noninfluential for the MDOP trend, making the networks uniformly applicable to lower altitude (launchers and suborbital vehicles) and higher altitude (Low and Medium Earth Orbits satellites) spacecraft
    corecore