25 research outputs found

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Improved Vertical Handoff Schemes for K-Tier Heterogeneous Wireless Network

    Get PDF
    The vertical hando_ schemes for heterogeneous wireless networks are presented in the thesis. A heterogeneous network consists of multiple tiers of available wireless net-works, framed as K-tier heterogeneous wireless network (KHWN). A typical KHWN adopted in the thesis consists of Global System for Mobile communication (GSM), Universal Mobile Telecommunications System (UMTS), Wireless Local Area Network (WLAN) and Long Term Evolution (LTE). The hando_ scheme considers the Receiv- ing Signal Strength (RSS)and Signal to Interference and Noise Ratio (SINR) with the tra_c cost as the key parameters for vertical hando_ decision making process. The key parameter RSS is estimated through a proposed path loss model based on local terrain and is observed to be better as compared to the earlier empirical models. With the local terrain input, the path loss model and RSS has been estimated for GSM, UMTS, WLAN and LTE networks. Following this a VHO scheme is proposed for voice and data communication. Subsequently this SINR and a KHWN consisting of multi-tier with the four types of services viz. voice call, video streaming, web brows- ing and telemetry are considered. In this multi-hierarchy decision making process the best suited Analytical and Hierarchical Process (AHP) is applied, for the decision making process in VHO. The proposed scheme of vertical hando_ provides higher QoS than the earlier algorithms of Combined SINR based Vertical Hando_ (CSVH) and Multi-dimensional SINR based vertical hando_ (MSVH). Also the unnecessary VHO are controlled by the proposed scheme. The result shows that the proposed scheme provides low cost tra_c and overall system throughput with a control of unnecessary hando_s for all kinds of services within the KHWN

    Optimal and practical handover decision algorithms in heteregeneous marco-femto cellular networks

    Get PDF
    Driven by the smart tablet/phone revolution and the proliferation of bandwidth hungry applications such as cloud computing and streaming video, the demand for high data rate wireless communication is increasing tremendously. In order to meet the increasing demand from subscribers, wireless operators are in the process of augmenting their macrocell network with supplemental infrastructure such as microcells, distributed antennas and relays. An alternative with lower upfront costs is to improve indoor coverage and capacity by using end-consumer installed femtocells. A femtocell is a low power, short range (up to 100 meters coverage radius) cellular wireless access point (AP), functioning in service provider owned licensed spectrum. Due to the proximity of end users to the femtocell access points, APs are able to provide higher end-user QoE and better spatial reuse of limited spectrum. Femtocells are useful in offloading the macro-cellular network as well as reducing the operating and capital expenditure costs for operators. Femtocells coexist with legacy cellular networks consisting of macrocells. In this emerging combined architecture, large number of Femtocell Application Point (FAPs) is randomly deployed in the coverage area of macro BSs. However, several problems related to MM (mobility management) and RM (resource management) in this combined architecture still remain to be solved. The ad hoc deployment of FAPs and asymmetric radio communication and call processing capabilities between macrofemto networks are the primary causes of these problems. Uncoordinated deployment of FAPs providing indoor oriented wireless access service within the macro coverage may cause severe interference problems that need to be mitigated and handled by RM/MM schemes. The MM decisions should take into account the resource constraints and UE mobility in order to prevent unnecessary or undesirable handovers towards femtocells. Ignoring these factors in MM decisions may lead to low customer satisfaction due to mismanagement of handover events in the combined macro-femto network, delayed signaling traffic and unsatisfactory call/connection quality. In order to address all of the aforementioned issues, the handover decision problem in combined femto-macro networks has been formulated as a multi-objective non-linear optimization problem. Since there are no known analytical solution to this problem, an MDP (Markov Decision Process) based heuristic has been proposed as a practical and optimal HO (handover) decision making scheme. This heuristic has been updated and improved in an iterative manner and has also been supported by a dynamic SON (Self Organizing Networks) algorithms that is based on heuristic's components. The performance results show that the final version of MDP based heuristic has signi cantly superior performance in terms offloading the macro network, minimizing the undesirable network events (e.g. outage and admission rejection) when compared to state-of-art handover algorithms

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Partilha de infraestruturas de telecomunicações

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesAs telecomunicações móveis têm enfrentado enormes desafios em todo o mundo, com especial ênfase nos países emergentes. A sua crescente importância para o crescimento das economias dos países tornam a sua presença essencial num mundo cada vez mais global e tecnológico. A partilha de infraestruturas de telecomunicações torna a implementação de comunicações móveis numa dada região ou país mais facilitada. No caso de Moçambique, que é dos países mais pobres do mundo, a partilha seria uma estratégia interessante de forma a permitir um rápido crescimento dos serviços de telecomunicações. Neste projeto, foi desenvolvida uma ferramenta que auxilia o estudo tecno-económico de cenários de partilha de infraestruturas de telecomunicações. Esta ferramenta permitiu assim criar cenários para a realidade Moçambicana. Esta dissertação pretende contribuir para o desenvolvimento da área das telecomunicações em mercados emergentes.Mobile telecommunications have been facing a vast number of challenges across the globe, with special emphasis on emerging countries. Their increasing importance for economic growth of countries make the presence of infrastructure essential in a progressively more global and technological world. Sharing telecommunication infrastructures can facilitate the implementation of mobile communications in a giving region or country. In the case of Mozambique, one of the poorest country of the world, a sharing strategy could potentially allow for a rapid expansion of telecommunication services. In this work project, a tool that supports the techno-economic study of scenarios of telecommunication infrastructure sharing was developed. Through this mechanism, scenarios that consider the Mozambican’s reality have been set up. This dissertation aims then to contribute to the development of the telecommunications sector in emerging markets

    Heterogeneous Wireless Networks: Traffic Offloading, Resource Allocation and Coverage Analysis

    Get PDF
    Unlike 2G systems where the radius of macro base station (MBS) could reach several kilometers, the cell radius of LTE-Advanced and next generation wireless networks (NGWNs) such as 5G networks would be random and up to a few hundred meters in order to overcome the radio signal propagation impairments. Heterogeneous wireless networks (HetNets) are becoming an integral part of the NGWNs especially 5G networks, where small cell base stations (SBSs), wireless-fidelity (WiFi) access points (APs), cellular BSs and device-to-device (D2D) enabled links coexist together. HetNets represent novel approaches for the mobile data offloading, resource allocation and coverage probability problems that help to optimize the network traffic. However, heterogeneity and interworking among different radio access technologies bring new challenges such as bandwidth resource allocation, user/cell association, traffic offloading based on the user activity and coverage probability in HetNets. This dissertation attempts to address three key research areas: traffic offloading, bandwidth resource allocation and coverage probability problems in HetNets. In the first part of this dissertation, we derive the mathematical framework to calculate the required active user population factor (AUPF) of small cells based on the probabilistic traffic models. The number of total mobile users and number of active mobile users have different probabilistic distributions such as different combinations of Binomial and Poisson distributions. Furthermore, AUPF is utilized to investigate the downlink BS and backhaul power consumption of HetNets. In the second part, we investigate two different traffic offloading (TO) schemes (a) Path loss (PL) and (b) Signal-to-Interference ratio (SIR) based strategies. In this context, a comparative study on two techniques to offload the traffic from macrocell to small cell is studied. Additionally, the AUPF, small cell access scheme and traffic type are included into a PL based TO strategy to minimize the congested macrocell traffic. In the third part, the joint user assignment and bandwidth resource allocation problem is formulated as a mixed integer non-linear programming (MINLP). Due to its intractability and computational complexity, the MINLP problem is transformed into a convex optimization problem via a binary variable relaxation approach. Based on the mathematical analysis of the problem, a heuristic algorithm for joint user assignment and bandwidth allocation is presented. The proposed solution achieves a near optimal user assignment and bandwidth allocation at reduced computational complexity. Lastly, we investigate the transition between traditional hexagonal BS deployment to random BS placement in HetNets. Independent Poisson Point Processes (PPPs) are used to model the random locations of BSs. Lloyds algorithm is investigated for analyzing the coverage probability in a network which functions as a bridge between random and structural BS deployments. The link distance distribution is obtained by using the Expectation-Maximization (EM) algorithm which is further utilized for calculating the coverage probability

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems
    corecore