191 research outputs found

    Dynamic Load Carrying Capacity of Flexible Manipulators Using Finite Element Method and Pontryagin’s Minimum Principle

    Get PDF
    In this paper, finding Dynamic Load Carrying Capacity (DLCC) of flexible link manipulators in point to-point motion was formulated as an optimal control problem. The finite element method was employed for modelling and deriving the dynamic equations of the system. The study employed indirect solution of optimal control for system motion planning. Due to offline nature of the method, many difficulties such system nonlinearities and all types of constraints can be catered for and implemented easily. The application of Pontryagin’s minimum principle to this problem was resulted in a standard two-point boundary value problem (TPBVP), solved numerically. Then, the formulation was developed to find the maximum payload and corresponding optimal path. The main advantage of the proposed method is that the various optimal trajectories can be obtained with different characteristics and different maximum payloads. Therefore, the designer can select a suitable path among the numerous optimal paths. In order to verify the effectiveness of the method, a simulation study considering a two-link flexible manipulator was presented in details

    Payload analysis and control of manipulators for human interactive environments

    Get PDF
    Esta tesis doctoral presenta los resultados de simulaciones numéricas y algunos análisis experimentales de tres aspectos principales: el modelamiento dinámico de manipuladores de múltiples grados de libertad (GdL) (n 2 GdL), el cálculo de la capacidad dinámica de carga asociada al manejo de dicha carga, y el análisis y diseño de controladores no lineales incluyendo el Control Adaptativo por Desfalsificación (CAD). Se desarrollaron análisis de dos (2) casos de estudio: el SCORBOT ER V PLUS fabricado por Intelitech Corp. de 5 grados de libertad y el manipulador redundante de 7 grados de libertad conocido como el Whole Arm Manipulator (WAM) fabricado por Barrett Technology Inc. y que cuenta con características de seguridad intrínseca, manipulación inversa y docilidad, y es aplicable en la interacción humano-robot (IHR). Inicialmente, se calculó y validó el modelado dinámico de los casos de estudio. Los modelos dinámicos inverso y directo del SCORBOT ER V PLUS fueron validados numéricamente. Luego, una validación experimental para el WAM presenta una comparación entre los datos numéricos y experimentales, identificando la necesidad de un mejor modelo de la fricción seca. Después, se propuso y evaluó una metodología para el cálculo de la capacidad dinámica de carga en el espacio de trabajo completo de manipuladores para diferentes tipos de controladores. Luego, para el análisis del Control Adaptativo por Desfalsificación con factor de olvido para manipuladores de múltiples grados de libertad, se realizó una comparación con un controlador adaptativo tradicional basado en el modelo y se aplicó al modelo del manipulador SCORBOR ER V PLUS. Finalmente, la técnica de Control por Desfalsificación fue exitosamente aplicada al modelo del WAM. En conclusión, este trabajo puede contribuir al uso de técnicas de control no lineal avanzado y manejo de carga para manipuladores redundantes con manipulación inversa, aplicables en ambientes de interacción con humanosAbstract : This doctoral thesis presents the results of numerical simulations and some experimental analysis of three main topics: the dynamical modeling of multiple degree of freedom (MDoF) manipulators (n 2 DoF), dynamic load carrying capacity computation (DLCC) for the payload handling issue and nonlinear control analysis and design including Unfalsified Adaptive Control (UAC). We performed analysis of two (2) cases of study: the 5 DoF SCORBOT ER V PLUS manufactured by Intelitech Corp. and the 7 DoF redundant Whole Arm Manipulator (WAM) manufactured by Barrett Technology Inc. with intrinsic safety, backdrivable and compliant characteristics and suitable for human-robot interaction (HRI). Initially, we computed and validated the dynamical model of the cases of study. The inverse and direct dynamical models of the SCORBOT ER V PLUS were numerically validated. Then, an experimental validation of inverse dynamical model of the WAM presents a comparison between numerical and experimental data, identifying the need for better friction models. After that, we proposed and evaluated a methodology for DLCC computation in the entire workspace of manipulators for different types of controllers. Then, for the analysis of the data-driven UAC with fading memory for multiple DoF manipulators, we performed a comparison with a traditional modelbased Adaptive Controller and applied to the SCORBOT ER V PLUS manipulator. Finally, the Unfalsified Control technique was successfully applied to the WAM model for a similar simulation setup. In conclusion, this work may contribute to the use of advanced nonlinear control and payload handling techniques for redundant backdrivable multiple DoF manipulators, suitable for human interactive environmentsDoctorad

    Design, analysis and fabrication of an articulated mobile manipulator

    Get PDF
    The process involved in designing, fabricating and analysing a mobile robotic manipulator to carry out pick and place task in a dynamic and unknown environment has been explained here. The manipulator designed and fabricated has a 5 – axis articulated arm for pick and place application but also can be reconfigured to do other tasks. The manipulator is built with its driving or power means fitted at the bottom to distribute the load effectively and also make handling easier. The mobile platform employs a novel suspension system which helps in relatively distributing the load equally to all wheels regardless of the wheels position giving the mobile platform better control and stability. With reference to many available manipulators and mobile platforms in the market, a practical design is perceived using designing tools and a fully functional prototype is fabricated. The kinematic model determining the end effector’s position and orientation is analysed systematically and presented. Navigational controls are built using fuzzy logic and genetic algorithm with the help of the sensors’ information so that the robot can negotiate obstacle while carrying out various tasks in an unknown environment. The path tracking for pick-and-place application is the overall target of this industrial manipulator

    Research on a semiautonomous mobile robot for loosely structured environments focused on transporting mail trolleys

    Get PDF
    In this thesis is presented a novel approach to model, control, and planning the motion of a nonholonomic wheeled mobile robot that applies stable pushes and pulls to a nonholonomic cart (York mail trolley) in a loosely structured environment. The method is based on grasping and ungrasping the nonholonomic cart, as a result, the robot changes its kinematics properties. In consequence, two robot configurations are produced by the task of grasping and ungrasping the load, they are: the single-robot configuration and the robot-trolley configuration. Furthermore, in order to comply with the general planar motion law of rigid bodies and the kinematic constraints imposed by the robot wheels for each configuration, the robot has been provided with two motorized steerable wheels in order to have a flexible platform able to adapt to these restrictions. [Continues.

    Design of a Mars Rover suspension mechanism

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Mechanical Engineering, Izmir, 2004Includes bibliographical references (leaves: 71-75)xiii, 75 leavesIt is obvious that rovers are important vehicles of today.s solar system exploration. Most of the rover designs have been developed for Mars and Moon surface in order to understand the geological history of the soil and rocks. Exploration operations need high speed and long distance traversal in a short mission period due to environmental effects, climate and communication restrictions. Several mechanisms have been suggested in recent years for suspensions of rovers on rough terrain. Although their different mechanisms have found a widespread usage in mobile robotics, their low operation speed is still a challenging problem. In this research, a new suspension mechanism has been designed and its kinematic analysis results were discussed. Standard rocker-bogie suspension mechanism, which has been developed in the late 1990.s, has excellent weight distribution for different positions on rough terrain. New design, mostly similar to rocker-bogie suspension system, has a natural advantage with linear bogie motion which protects the whole system from getting rollover during high speed operations. This improvement increases the reliability of structure on field operations and also enables the higher speed exploration with same obstacle height capacity as rocker-bogie. In this thesis study, new bogie mechanism consisted of double-lambda mechanisms, which has been firstly presented by Pafnuty Lvovich Chebyshev in 1869, is solved by analytically to define the positions and singular configurations. A new structural synthesis formula also has been introduced for such suspension mechanisms with lower and higher kinematic pairs. By using structural synthesis methods, a suspension mechanism has been designed with double-lambda mechanism. Equivalent force and moment functions were also derived with equation of motion method. The results are confirmed with the computer analysis made by Visual Nastran 4D®. For this purpose, a computer model has been constructed and assembled with the same design parameters of NASA Mars Exploration Rovers (MER1 and MER2)

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable
    corecore