16,720 research outputs found

    Ray casting implicit fractal surfaces with reduced affine arithmetic

    Get PDF
    A method is presented for ray casting implicit surfaces defined by fractal combinations of procedural noise functions. The method is robust and uses affine arithmetic to bound the variation of the implicit function along a ray. The method is also efficient due to a modification in the affine arithmetic representation that introduces a condensation step at the end of every non-affine operation. We show that our method is able to retain the tight estimation capabilities of affine arithmetic for ray casting implicit surfaces made from procedural noise functions while being faster to compute and more efficient to store

    Fast Reliable Ray-tracing of Procedurally Defined Implicit Surfaces Using Revised Affine Arithmetic

    Get PDF
    Fast and reliable rendering of implicit surfaces is an important area in the field of implicit modelling. Direct rendering, namely ray-tracing, is shown to be a suitable technique for obtaining good-quality visualisations of implicit surfaces. We present a technique for reliable ray-tracing of arbitrary procedurally defined implicit surfaces by using a modification of Affine Arithmetic called Revised Affine Arithmetic. A wide range of procedurally defined implicit objects can be rendered using this technique including polynomial surfaces, constructive solids, pseudo-random objects, procedurally defined microstructures, and others. We compare our technique with other reliable techniques based on Interval and Affine Arithmetic to show that our technique provides the fastest, while still reliable, ray-surface intersections and ray-tracing. We also suggest possible modifications for the GPU implementation of this technique for real-time rendering of relatively simple implicit models and for near real-time for complex implicit models

    A direct method for the evaluation of lower and upper bound ratchet limits

    Get PDF
    The calculation of the ratchet limit is often vital for the assessment of the design and integrity of components which are subject to cyclic loading. This work describes the addition of a lower bound calculation to the existing Linear Matching Method upper bound ratchet analysis method. This lower bound calculation is based on Melan's theorem, and makes use of the residual and elastic stress fields calculated by the upper bound technique to calculate the lower bound ratchet limit multiplier. By doing this, the method combines the stable convergence of the upper bound method but retains the conservatism offered by the lower bound. These advantages are complemented by the ability of the Linear Matching Method to consider real 3D geometries subject to complex load histories including the effect of temperature dependent yield stress. The convergence properties of this lower bound ratchet limit are investigated through a benchmark problem of a plate with a central hole subject to cyclic thermal and mechanical loads. To demonstrate the effectiveness of the method, the ratchet limit of a thick walled pipe intersection, also subject to cyclic thermal and mechanical loads, is considered. Validation of these results is provided by full elastic-plastic FEA in Abaqus

    Robot trajectory planning using OLP and structured light 3D machine vision

    Get PDF
    This paper proposes a new methodology for robotic offline programming (OLP) addressing the issue of automatic program generation directly from 3D CAD models and verification through online 3D reconstruction. Limitations of current OLP include manufacturing tolerances between CAD and workpieces and inaccuracies in workpiece placement and modelled work cell. These issues are addressed and demonstrated through surface scanning, registration, and global and local error estimation. The method allows the robot to adjust the welding path designed from the CAD model to the actual workpiece. Alternatively, for non-repetitive tasks and where a CAD model is not available, it is possible to interactively define the path online over the scanned surface

    The COST IRACON Geometry-based Stochastic Channel Model for Vehicle-to-Vehicle Communication in Intersections

    Full text link
    Vehicle-to-vehicle (V2V) wireless communications can improve traffic safety at road intersections and enable congestion avoidance. However, detailed knowledge about the wireless propagation channel is needed for the development and realistic assessment of V2V communication systems. We present a novel geometry-based stochastic MIMO channel model with support for frequencies in the band of 5.2-6.2 GHz. The model is based on extensive high-resolution measurements at different road intersections in the city of Berlin, Germany. We extend existing models, by including the effects of various obstructions, higher order interactions, and by introducing an angular gain function for the scatterers. Scatterer locations have been identified and mapped to measured multi-path trajectories using a measurement-based ray tracing method and a subsequent RANSAC algorithm. The developed model is parameterized, and using the measured propagation paths that have been mapped to scatterer locations, model parameters are estimated. The time variant power fading of individual multi-path components is found to be best modeled by a Gamma process with an exponential autocorrelation. The path coherence distance is estimated to be in the range of 0-2 m. The model is also validated against measurement data, showing that the developed model accurately captures the behavior of the measured channel gain, Doppler spread, and delay spread. This is also the case for intersections that have not been used when estimating model parameters.Comment: Submitted to IEEE Transactions on Vehicular Technolog
    corecore