393 research outputs found

    Novel cardiovascular magnetic resonance phenotyping of the myocardium

    Get PDF
    INTRODUCTION Left ventricular (LV) microstructure is unique, composed of a winding helical pattern of myocytes and rotating aggregations of myocytes called sheetlets. Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease characterised by left ventricular hypertrophy (LVH), however the link between LVH and underlying microstructural aberration is poorly understood. In vivo cardiovascular diffusion tensor imaging (cDTI) is a novel cardiovascular MRI (CMR) technique, capable of characterising LV microstructural dynamics non-invasively. In vivo cDTI may therefore improve our understanding microstructural-functional relationships in health and disease. METHODS AND RESULTS The monopolar diffusion weighted stimulated echo acquisition mode (DW-STEAM) sequence was evaluated for in vivo cDTI acquisitions at 3Tesla, in healthy volunteers (HV), patients with hypertensive LVH, and HCM patients. Results were contextualised in relation to extensively explored technical limitations. cDTI parameters demonstrated good intra-centre reproducibility in HCM, and good inter-centre reproducibility in HV. In all subjects, cDTI was able to depict the winding helical pattern of myocyte orientation known from histology, and the transmural rate of change in myocyte orientation was dependent on LV size and thickness. In HV, comparison of cDTI parameters between systole and diastole revealed an increase in transmural gradient, combined with a significant re-orientation of sheetlet angle. In contrast, in HCM, myocyte gradient increased between phases, however sheetlet angulation retained a systolic-like orientation in both phases. Combined analysis with hypertensive patients revealed a proportional decrease in sheetlet mobility with increasing LVH. CONCLUSION In vivo DW-STEAM cDTI can characterise LV microstructural dynamics non-invasively. The transmural rate of change in myocyte angulation is dependent on LV size and wall thickness, however inter phase changes in myocyte orientation are unaffected by LVH. In contrast, sheetlet dynamics demonstrate increasing dysfunction, in proportion to the degree of LVH. Resolving technical limitations is key to advancing this technique, and improving the understanding of the role of microstructural abnormalities in cardiovascular disease expression.Open Acces

    Myocardial deformation assessment using cardiovascular magnetic resonance-feature tracking technique.

    Get PDF
    BACKGROUND: Cardiovascular magnetic resonance (CMR) imaging is an important modality that allows the assessment of regional myocardial function by measuring myocardial deformation parameters, such as strain and strain rate throughout the cardiac cycle. Feature tracking is a promising quantitative post-processing technique that is increasingly used. It is commonly applied to cine images, in particular steady-state free precession, acquired during routine CMR examinations. OBJECTIVE: To review the studies that have used feature tracking techniques in healthy subjects or patients with cardiovascular diseases. The article emphasizes the advantages and limitations of feature tracking when applied to regional deformation parameters. The challenges of applying the techniques in clinics and potential solutions are also reviewed. RESULTS: Research studies in healthy volunteers and/or patients either applied CMR-feature tracking alone to assess myocardial motion or compared it with either established CMR-tagging techniques or to speckle tracking echocardiography. These studies assessed the feasibility and reliability of calculating or determining global and regional myocardial deformation strain parameters. Regional deformation parameters are reviewed and compared. Better reproducibility for global deformation was observed compared with segmental parameters. Overall, studies demonstrated that circumferential was the most reproducible deformation parameter, usually followed by longitudinal strain; in contrast, radial strain showed high variability. CONCLUSION: Although feature tracking is a promising tool, there are still discrepancies in the results obtained using different software packages. This highlights a clear need for standardization of MRI acquisition parameters and feature tracking analysis methodologies. Validation, including physical and numerical phantoms, is still required to facilitate the use of feature tracking in routine clinical practice

    The association of left atrial mechanics with left ventricular morphology in patients with hypertrophic cardiomyopathy: A cardiac magnetic resonance study

    Get PDF
    Purpose: Hypertrophic cardiomyopathy (HCM) is related with structural and pathologic changes in the left atrium (LA) and left ventricle (LV). The aim of this study was to explore the association between LA mechanics and LV charac-teristics in patients with HCM using cardiac magnetic resonance feature tracking (CMR-FT). Material and methods: A total of 76 patients with HCM and 26 healthy controls were included in the study. The pa-rameters including the extent of LV late gadolinium enhancement (LGE-%) and the LV early diastolic longitudinal strain rate (edLSR) were assessed for LV. LA conduit, booster, and reservoir functions were assessed by LA fractional volumes and strain analyses using CMR-FT. HCM patients were classified as HCM patients without LGE, with mild LGE-% (0% = 10%), and prominent LGE-% (10% < LGE-%).Results: HCM patients had worse LA functions compared with the controls (p < 0.05). The majority of LA functional indices were more impaired in HCM patients with regard to LGE. LA volumes were higher in HCM patients with prominent LGE-% compared with HCM patients with mild LGE-% (p < 0.05). However, only a minority of LA functional parameters differed between the 2 groups. LA strain parameters showed weak to modest correlations with LV LGE-% and LV edLSR.Conclusions: LV characteristics, to some extent, influence LA mechanics, but they might not be the only factor induc-ing LA dysfunction in patients with HCM

    Application of global and regional myocardial deformation using cardiovascular magnetic resonance: an assessment of feature tracking in vivo and using numerical simulation

    Get PDF
    PhDCardiovascular diseases are responsible for approximately a third of all death worldwide, with hypertension being a major risk factor for many of those. Hypertension can lead to left ventricle hypertrophy and diastolic and systolic dysfunction. Myocardial deformation parameters have been shown to have high sensitivity at the early stage of contractile dysfunction. They can be derived from myocardial tagging, considered to be the goldstandard method, or from routinely acquired cine images using feature tracking (FT) techniques. This work aimed to validate FT as a post processing technique. Three FT software packages were used to measure strain parameters in healthy subjects and hypertensive patients in order to assess agreement. Intra- and inter-observer reproducibility was also investigated. The CVI42 software was found to have the best reproducibility. Good agreement across the three software packages and both groups was also observed for circumferential strain calculated from mid-ventricle short axis and longitudinal strain parameters. CVI42 was also compared to the reference tagging analysis by applying both techniques to a healthy and hypertensive patient cohort. Although tagging could discriminate between the two populations (longitudinal strain), no statistically significant differences were found by CVI42. The final validation step was to generate simulation models mimicking simplified cardiac views to compare the experimental results against a true gold-standard for which strain values are known. Two commercial FT software packages were used to analyze the simulated cine images with increasing complexity levels. Both showed inaccurate tracking and high errors compared to analytical values. This indicated that more realistic and complex numerical models should be investigated. Although FT is a relatively new and promising technique, the results demonstrated that it still requires going through standardization to better understand inter-vendor variability.Government of Saudi Arabia

    Evaluation of left ventricular torsion by cardiovascular magnetic resonance

    Get PDF
    Recently there has been considerable interest in LV torsion and its relationship with symptomatic and pre-symptomatic disease processes. Torsion gives useful additional information about myocardial tissue performance in both systolic and diastolic function. CMR assessment of LV torsion is simply and efficiently performed. However, there is currently a wide variation in the reporting of torsional motion and the procedures used for its calculation. For example, torsion has been presented as twist (degrees), twist per length (degrees/mm), shear angle (degrees), and shear strain (dimensionless). This paper reviews current clinical applications and shows how torsion can give insights into LV mechanics and the influence of LV geometry and myocyte fiber architecture on cardiac function. Finally, it provides recommendations for CMR measurement protocols, attempts to stimulate standardization of torsion calculation, and suggests areas of useful future research

    Myocardial strain, torsion and untwisting in the normal and failing heart measured with magnetic resonance imaging

    Get PDF
    Rossum, A.C. van [Promotor]Heethaar, R.M. [Promotor]Marcus, J.T. [Copromotor]Götte, M.J.W. [Copromotor

    QUANTIFICATION OF MYOCARDIAL MECHANICS IN LEFT VENTRICLES UNDER INOTROPIC STIMULATION AND IN HEALTHY RIGHT VENTRICLES USING 3D DENSE CMR

    Get PDF
    Statistical data from clinical studies indicate that the death rate caused by heart disease has decreased due to an increased use of evidence-based medical therapies. This includes the use of magnetic resonance imaging (MRI), which is one of the most common non-invasive approaches in evidence-based health care research. In the current work, I present 3D Lagrangian strains and torsion in the left ventricle of healthy and isoproterenol-stimulated rats, which were investigated using Displacement ENcoding with Stimulated Echoes (DENSE) cardiac magnetic resonance (CMR) imaging. With the implementation of the 12-segment model, a detailed profile of regional cardiac mechanics was reconstructed for each subject. Statistical analysis revealed that isoproterenol induced a significant change in the strains and torsion in certain regions at the mid-ventricle level. In addition, I investigated right ventricular cardiac mechanics with the methodologies developed for the left ventricle. This included a comparison of different regions within the basal and mid-ventricular regions. Despite no regional variation found in the peak circumferential strain, the peak longitudinal strain exhibited regional variation at the anterior side of the RV due to the differences in biventricular torsion, mechanism of RV free wall contraction, and fiber architecture at RV insertions. Future applications of the experimental work presented here include the construction and validation of biventricular finite element models. Specifically, the strains predicted by the models will be statistically compared with experimental strains. In addition, the results of the present study provide an essential reference of RV baseline evaluated with DENSE MRI, a highly objective technique

    Range Variability in CMR Feature Tracking Multilayer Strain across Different Stages of Heart Failure

    Get PDF
    Heart failure (HF) is associated with progressive ventricular remodeling and impaired contraction that affects distinctly various regions of the myocardium. Our study applied cardiac magnetic resonance (CMR) feature tracking (FT) to assess comparatively myocardial strain at 3 distinct levels: subendocardial (Endo-), mid (Myo-) and subepicardial (Epi-) myocardium across an extended spectrum of patients with HF. 59 patients with HF, divided into 3 subgroups as follows: preserved ejection fraction (HFpEF, N = 18), HF with mid-range ejection fraction (HFmrEF, N = 21), HF with reduced ejection fraction (HFrEF, N = 20) and a group of age- gender- matched volunteers (N = 17) were included. Using CMR FT we assessed systolic longitudinal and circumferential strain and strain-rate at Endo-, Myo- and Epi- levels. Strain values were the highest in the Endo- layer and progressively lower in the Myo- and Epi- layers respectively, this gradient was present in all the patients groups analyzed but decreased progressively in HFmrEF and further on in HFrEF groups. GLS decreased with the severity of the disease in all 3 layers: Normal > HFpEF > HFmrEF > HFrEF (Endo-: 1223.0 \ub1 3.5 > 1220.0 \ub1 3.3 > 1216.4 \ub1 2.2 > 1211.0 \ub1 3.2, p 1217.5.0 \ub1 2.6 > 1214.5 \ub1 2.1 > 129.6 \ub1 2.7, p 1212.2 \ub1 2.1 > 1210.6 \ub1 2.3 > 127.7 \ub1 2.3, p HFmrEF > HFrEF (Endo-: 1234.5 \ub1 6.2 > 1220.0 \ub1 4.2 > 12.3 \ub1 4.2, p 1213.0 \ub1 3.4 > 128.0 \ub1 2.7. p 127.9 \ub1 2.3 > 124.5 \ub1 1.9. p < 0.001). CMR feature tracking multilayer strain assessment identifies large range differences between distinct myocardial regions. Our data emphasizes the importance of sub-endocardial myocardium for cardiac contraction and thus, its predilect role in imaging detection of functional impairment. CMR feature tracking offers a convenient, readily available, platform to evaluate myocardial contraction with excellent spatial resolution, rendering further details about discrete areas of the myocardium. Using this technique across distinct groups of patients with heart failure (HF), we demonstrate that subendocardial regions of the myocardium exhibit much higher strain values than mid-myocardium or subepicardial and are more sensitive to detect contractile impairment. We also show comparatively higher values of circumferential strain compared with longitudinal and a higher sensitivity to detect contractile impairment. A newly characterized group of patients, HF with mid-range ejection fraction (EF), shows similar traits of decompensation but has relatively higher strain values as patients with HF with reduced EF
    corecore