1,127 research outputs found

    Fusion of facial regions using color information in a forensic scenario

    Full text link
    Comunicación presentada en: 18th Iberoamerican Congress on Pattern Recognition, CIARP 2013; Havana; Cuba; 20-23 November 2013The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-41827-3_50This paper reports an analysis of the benefits of using color information on a region-based face recognition system. Three different color spaces are analysed (RGB, YCbCr, lαβ) in a very challenging scenario matching good quality mugshot images against video surveillance images. This scenario is of special interest for forensics, where examiners carry out a comparison of two face images using the global information of the faces, but paying special attention to each individual facial region (eyes, nose, mouth, etc.). This work analyses the discriminative power of 15 facial regions comparing both the grayscale and color information. Results show a significant improvement of performance when fusing several regions of the face compared to just using the whole face image. A further improvement of performance is achieved when color information is consideredThis work has been partially supported by contract with Spanish Guardia Civil and projects BBfor2 (FP7-ITN-238803), bio-Challenge (TEC2009-11186), Bio Shield (TEC2012-34881), Contexts (S2009/TIC-1485), TeraSense (CSD2008-00068) and "Cátedra UAM-Telefónica

    Forensic Face Recognition: A Survey

    Get PDF
    Beside a few papers which focus on the forensic aspects of automatic face recognition, there is not much published about it in contrast to the literature on developing new techniques and methodologies for biometric face recognition. In this report, we review forensic facial identification which is the forensic experts‟ way of manual facial comparison. Then we review famous works in the domain of forensic face recognition. Some of these papers describe general trends in forensics [1], guidelines for manual forensic facial comparison and training of face examiners who will be required to verify the outcome of automatic forensic face recognition system [2]. Some proposes theoretical framework for application of face recognition technology in forensics [3] and automatic forensic facial comparison [4, 5]. Bayesian framework is discussed in detail and it is elaborated how it can be adapted to forensic face recognition. Several issues related with court admissibility and reliability of system are also discussed. \ud Until now, there is no operational system available which automatically compare image of a suspect with mugshot database and provide result usable in court. The fact that biometric face recognition can in most cases be used for forensic purpose is true but the issues related to integration of technology with legal system of court still remain to be solved. There is a great need for research which is multi-disciplinary in nature and which will integrate the face recognition technology with existing legal systems. In this report we present a review of the existing literature in this domain and discuss various aspects and requirements for forensic face recognition systems particularly focusing on Bayesian framework

    Comparative analysis of the variability of facial landmarks for forensics using CCTV images

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-53842-1_35Proceedings of the 6th Pacific-Rim Symposium, PSIVT 2013, Guanajuato, Mexico, October 28-November 1, 2013.This paper reports a study of the variability of facial landmarks in a forensic scenario using images acquired from CCTV images. This type of images presents a very low quality and a large range of variability factors such as differences in pose, expressions, occlusions, etc. Apart from this, the variability of facial landmarks is affected by the precision in which the landmarks are tagged. This process can be done manually or automatically depending on the application (e.g., forensics or automatic face recognition, respectively). This study is carried out comparing both manual and automatic procedures, and also 3 distances between the camera and the subjects. Results show that landmarks located in the outer part of the face (highest end of the head, ears and chin) present a higher level of variability compared to the landmarks located the inner face (eye region, and nose). This study shows that the landmark variability increases with the distance between subject and camera, and also the results of the manual and automatic approaches are similar for the inner facial landmarks.This work has been partially supported by a contract with Spanish Guardia Civil and projects BBfor2 (FP7-ITN-238803), Bio-Shield (TEC2012-34881), Contexts (S2009/TIC-1485), TeraSense (CSD2008-00068) and “Catedra UAM-Telefonica”

    Identification using face regions: Application and assessment in forensic scenarios

    Full text link
    This is the author’s version of a work that was accepted for publication in Forensic Science International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Forensic Science International, 23, 1-3, (2013) DOI: 10.1016/j.forsciint.2013.08.020This paper reports an exhaustive analysis of the discriminative power of the different regions of the human face on various forensic scenarios. In practice, when forensic examiners compare two face images, they focus their attention not only on the overall similarity of the two faces. They carry out an exhaustive morphological comparison region by region (e.g., nose, mouth, eyebrows, etc.). In this scenario it is very important to know based on scientific methods to what extent each facial region can help in identifying a person. This knowledge obtained using quantitative and statical methods on given populations can then be used by the examiner to support or tune his observations. In order to generate such scientific knowledge useful for the expert, several methodologies are compared, such as manual and automatic facial landmarks extraction, different facial regions extractors, and various distances between the subject and the acquisition camera. Also, three scenarios of interest for forensics are considered comparing mugshot and Closed-Circuit TeleVision (CCTV) face images using MORPH and SCface databases. One of the findings is that depending of the acquisition distances, the discriminative power of the facial regions change, having in some cases better performance than the full face

    Computer‑aided craniofacial superimposition validation study: the identification of the leaders and participants of the Polish‑Lithuanian January Uprising (1863–1864)

    Get PDF
    In 2017, a series of human remains corresponding to the executed leaders of the “January Uprising” of 1863–1864 were uncovered at the Upper Castle of Vilnius (Lithuania). During the archeological excavations, 14 inhumation pits with the human remains of 21 individuals were found at the site. The subsequent identification process was carried out, including the analysis and cross-comparison of post-mortem data obtained in situ and in the lab with ante-mortem data obtained from historical archives. In parallel, three anthropologists with diverse backgrounds in craniofacial identification and two students without previous experience attempted to identify 11 of these 21 individuals using the craniofacial superimposition technique. To do this, the five participants had access to 18 3D scanned skulls and 14 photographs of 11 different candidates. The participants faced a cross-comparison problem involving 252 skull-face overlay scenarios. The methodology follows the main agreements of the European project MEPROCS and uses the software Skeleton-ID™. Based on MEPROCS standard, a final decision was provided within a scale, assigning a value in terms of strong, moderate, or limited support to the claim that the skull and the facial image belonged (or not) to the same person for each case. The problem of binary classification, positive/negative, with an identification rate for each participant was revealed. The results obtained in this study make the authors think that both the quality of the materials used and the previous experience of the analyst play a fundamental role when reaching conclusions using the CFS technique.CRUE-CSICSpanish Government Junta de Andalucia CONFIA 2021/C005/00141299 EXAISFI PID2021-122916NB-I00Centro de Investigacion de Galicia "CITIC" - Xunta de Galicia P18-FR-4262European Union (European Regional Development Fund-Galicia 2014-2020 Program)Ministry of Science, ICT & Future Planning, Republic of Korea ED431G 2019/01Universidade da Cor una/CISUG RYC2020-029454-

    3D Face Reconstruction: the Road to Forensics

    Full text link
    3D face reconstruction algorithms from images and videos are applied to many fields, from plastic surgery to the entertainment sector, thanks to their advantageous features. However, when looking at forensic applications, 3D face reconstruction must observe strict requirements that still make its possible role in bringing evidence to a lawsuit unclear. An extensive investigation of the constraints, potential, and limits of its application in forensics is still missing. Shedding some light on this matter is the goal of the present survey, which starts by clarifying the relation between forensic applications and biometrics, with a focus on face recognition. Therefore, it provides an analysis of the achievements of 3D face reconstruction algorithms from surveillance videos and mugshot images and discusses the current obstacles that separate 3D face reconstruction from an active role in forensic applications. Finally, it examines the underlying data sets, with their advantages and limitations, while proposing alternatives that could substitute or complement them.Comment: The manuscript has been accepted for publication in ACM Computing Surveys. arXiv admin note: text overlap with arXiv:2303.1116

    3D Face Reconstruction: the Road to Forensics

    Get PDF
    3D face reconstruction algorithms from images and videos are applied to many fields, from plastic surgery to the entertainment sector, thanks to their advantageous features. However, when looking at forensic applications, 3D face reconstruction must observe strict requirements that still make its possible role in bringing evidence to a lawsuit unclear. An extensive investigation of the constraints, potential, and limits of its application in forensics is still missing. Shedding some light on this matter is the goal of the present survey, which starts by clarifying the relation between forensic applications and biometrics, with a focus on face recognition. Therefore, it provides an analysis of the achievements of 3D face reconstruction algorithms from surveillance videos and mugshot images and discusses the current obstacles that separate 3D face reconstruction from an active role in forensic applications. Finally, it examines the underlying data sets, with their advantages and limitations, while proposing alternatives that could substitute or complement them

    Pose variability compensation using projective transformation for forensic face recognition

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. E. Gonzalez-Sosa, R. Vera-Rodriguez, J. Fierrez, P. Tome and J. Ortega-Garcia, "Pose Variability Compensation Using Projective Transformation for Forensic Face Recognition," Biometrics Special Interest Group (BIOSIG), 2015 International Conference of the, Darmstadt, 2015, pp. 1-5. doi: 10.1109/BIOSIG.2015.7314615The forensic scenario is a very challenging problem within the face recognition community. The verification problem in this case typically implies the comparison between a high quality controlled image against a low quality image extracted from a close circuit television (CCTV). One of the downsides that frequently presents this scenario is pose deviation since CCTV devices are usually placed in ceilings and the subject normally walks facing forward. This paper proves the value of the projective transformation as a simple tool to compensate the pose distortion present in surveillance images in forensic scenarios. We evaluate the influence of this projective transformation over a baseline system based on principal component analysis and support vector machines (PCA-SVM) for the SCface database. The application of this technique improves greatly the performance, being this improvement more striking with closer images. Results suggest the convenience of this transformation within the preprocessing stage of all CCTV images. The average relative improvement reached with this method is around 30% of EER.This work has been partially supported in part by Bio-Shield (TEC2012-34881) from Spanish MINECO, in part by BEAT (FP7-SEC-284989) from EU and in part by Cátedra UAM-Telefónica. E. Gonzalez-Sosa is supported by a PhD scholarship from Universidad Autonoma de Madrid

    Facial soft biometric features for forensic face recognition

    Full text link
    This is the author’s version of a work that was accepted for publication in Forensic Science International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Forensic Science International, VOL 257, (2015) DOI 10.1016/j.forsciint.2015.09.002This paper proposes a functional feature-based approach useful for real forensic caseworks, based on the shape, orientation and size of facial traits, which can be considered as a soft biometric approach. The motivation of this work is to provide a set of facial features, which can be understood by non-experts such as judges and support the work of forensic examiners who, in practice, carry out a thorough manual comparison of face images paying special attention to the similarities and differences in shape and size of various facial traits. This new approach constitutes a tool that automatically converts a set of facial landmarks to a set of features (shape and size) corresponding to facial regions of forensic value. These features are furthermore evaluated in a population to generate statistics to support forensic examiners. The proposed features can also be used as additional information that can improve the performance of traditional face recognition systems. These features follow the forensic methodology and are obtained in a continuous and discrete manner from raw images. A statistical analysis is also carried out to study the stability, discrimination power and correlation of the proposed facial features on two realistic databases: MORPH and ATVS Forensic DB. Finally, the performance of both continuous and discrete features is analyzed using different similarity measures. Experimental results show high discrimination power and good recognition performance, especially for continuous features. A final fusion of the best systems configurations achieves rank 10 match results of 100% for ATVS database and 75% for MORPH database demonstrating the benefits of using this information in practice.This work has been partially supported by Spanish Guardia Civil, projects Bio-Shield (TEC2012-34881) from Spanish MINECO and BEAT (FP7-SEC-284989) from EU, and Catedra UAM Telefonica

    Study on the criteria for assessing skull-face correspondence in craniofacial superimposition

    Get PDF
    Craniofacial superimposition has the potential to be used as an identification method when other traditional biological techniques are not applicable due to insufficient quality or absence of ante-mortem and post-mortem data. Despite having been used in many countries as a method of inclusion and exclusion for over a century it lacks standards. Thus, the purpose of this research is to provide forensic practitioners with standard criteria for analysing skull-face relationships. Thirty-seven experts from 16 different institutions participated in this study, which consisted of evaluating 65 criteria for assessing skull-face anatomical consistency on a sample of 24 different skull-face superimpositions. An unbiased statistical analysis established the most objective and discriminative criteria. Results did not show strong associations, however, important insights to address lack of standards were provided. In addition, a novel methodology for understanding and standardizing identification methods based on the observation of morphological patterns has been proposed
    • …
    corecore