619 research outputs found

    A simple all-fiber comb filter based on the combined effect of multimode interference and Mach-Zehnder interferometer

    Get PDF
    A polarization-dependent all-fiber comb filter based on a combination effect of multimode interference and Mach-Zehnder interferometer was proposed and demonstrated. The comb filter was composed with a short section of multimode fiber (MMF) fusion spliced with a conventional single mode fiber on the one side and a short section of a different type of optical fiber on the other side. The second type of optical fiber is spliced to the MMF with a properly designed misalignment. Different types and lengths of fibers were used to investigate the influence of fiber types and lengths on the performance of the comb filter. Experimentally, several comb filters with free spectral range (FSR) values ranging from 0.236 to 1.524 nm were achieved. The extinction ratio of the comb filter can be adjusted from 6 to 11.1 dB by varying polarization states of the input light, while maintaining the FSR unchanged. The proposed comb filter has the potential to be used in optical dense wavelength division multiplexing communication systems

    High performance photonic microwave filters based on a 50GHz optical soliton crystal Kerr micro-comb

    Full text link
    We demonstrate a photonic radio frequency (RF) transversal filter based on an integrated optical micro-comb source featuring a record low free spectral range of 49 GHz yielding 80 micro-comb lines across the C-band. This record-high number of taps, or wavelengths for the transversal filter results in significantly increased performance including a QRF factor more than four times higher than previous results. Further, by employing both positive and negative taps, an improved out-of-band rejection of up to 48.9 dB is demonstrated using Gaussian apodization, together with a tunable centre frequency covering the RF spectra range, with a widely tunable 3-dB bandwidth and versatile dynamically adjustable filter shapes. Our experimental results match well with theory, showing that our transversal filter is a competitive solution to implement advanced adaptive RF filters with broad operational bandwidths, high frequency selectivity, high reconfigurability, and potentially reduced cost and footprint. This approach is promising for applications in modern radar and communications systems.Comment: 19 pages, 12 figures, 107 reference

    New opportunities for integrated microwave photonics

    Get PDF
    Recent advances in photonic integration have propelled microwave photonic technologies to new heights. The ability to interface hybrid material platforms to enhance light-matter interactions has led to the developments of ultra-small and high-bandwidth electro-optic modulators, frequency synthesizers with the lowest noise, and chip signal processors with orders-of-magnitude enhanced spectral resolution. On the other hand, the maturity of high-volume semiconductor processing has finally enabled the complete integration of light sources, modulators, and detectors in a single microwave photonic processor chip and has ushered the creation of a complex signal processor with multi-functionality and reconfigurability similar to their electronic counterparts. Here we review these recent advances and discuss the impact of these new frontiers for short and long term applications in communications and information processing. We also take a look at the future perspectives in the intersection of integrated microwave photonics with other fields including quantum and neuromorphic photonics

    Compact interrogation system of fiber Bragg grating sensors based on multiheterodyne dispersion interferometry for dynamic strain measurements

    Get PDF
    Dual-comb multiheterodyne spectroscopy is a well-established technology for the highly sensitive real-time detection and measurement of the optical spectra of samples, including gases and fiber sensors. However, a common drawback of dual-comb spectroscopy is the need for a broadband amplitude-resolved absorption or reflection measurement, which increases the complexity of the dual comb and requires the precise calibration of the optical detection. In the present study, we present an alternative dispersion-based approach applied to fiber Bragg grating sensors in which the dual comb is compacted by a single dual-drive-unit optical modulator, and the fiber sensor is part of a dispersion interferometer. The incident dual comb samples a few points in the spectrum that are sensitive to Bragg wavelength changes through the optical phase. The spectra reading is improved due to the external interferometer and is desensitized to changes in the amplitude of the comb tones. The narrow-band detection of the fiber sensor dispersion changes that we demonstrate enables the compact, cost-effective, high-resolution multiheterodyne interrogation of high-throughput interferometric fiber sensors. These characteristics open its application both to the detection of fast phenomena, such as ultrasound, and to the precise measurement at high speed of chemical-/biological-sensing samples. The results with a low-reflectivity fiber Bragg grating show the detection of dynamic strain in the range of 215 nepsilon with a 30 dB signal to noise ratio and up to 130 kHz (ultrasonic range).This research was funded by the Spanish Education, Culture and Sports ministry, grant number FPU16/03695 (FPU program 2016 SIA: 998758) and by the Spanish Ministry of Economy and Competitiveness, grant number TEC2017-86271-R (PARAQUA project). This work was supported by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M26), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation)

    Multiheterodyne tunable sources for the interrogation of fiber optic sensors applied to acoustic emissions and ultrasound

    Get PDF
    Mención Internacional en el título de doctorLight is a very useful tool for measuring high frequency and low amplitude mechanical vibrations. Thanks to the interference process and under certain circumstances we can obtain a specific sort of optical sources called multimode multiheterodyne sources, that are very useful to read several optical wavelengths at the same time on a single photodetector and distinguishing them from each other. This characteristic makes them suitable for interrogating fiber optic sensors. In this thesis, I analyze several fiber optic sensor readout methods that mix multiheterodyne techniques, multimode techniques, and interferometry techniques to measure ultrasound and acoustic mechanical waves. These mechanical waves occur when periodic forces are applied to mechanical structures. This disturbs the layout of atoms and may lead to cracks or the complete collapse of the structure. Therefore, the characterization and measurement of such vibrations are of great importance when performing structure health monitoring (SHM) and non-destructive evaluation (NDE). This thesis aims to solve this problem by implementing several systems that employ light-based technology to measure and characterize mechanical vibrations up to 1 MHz of frequency and sub-nano-strain (lower than 10-3 ppm) level of resolution. The proposed systems involve new features and parameters more settable compared to more conventional approaches of optical sensor reading processes and therefore they offer wider possibilities. A total of three systems have been implemented and tested: First, an electro-optic dual optical frequency comb source to read fiber Bragg gratings for dynamic measurements. This set up reaches 120 kHz of mechanical frequency detection. The second system is based on a self-heterodyne acousto-optic comb that reads a random fiber grating sensor. In this case, the system can detect up to 1 MHz of mechanical vibrations. Finally, the third is based on a compact electro-optic dual optical frequency comb that is used to read low reflectivity fiber Bragg gratings with a dispersion interferometer. This system can detect a maximum of 135 kHz of mechanical frequencies. The results of this thesis improve previous systems achievements to satisfy the specifications required to date in this application, both in mechanical bandwidth and in strain amplitude. They also show the potential of these multimode sources for high-precision optical sensing.La luz es una herramienta muy útil para medir vibraciones mecánicas de alta frecuencia y baja amplitud. Gracias al proceso de interferencia y bajo determinadas circunstancias podemos obtener un tipo específico de fuentes ópticas, denominadas fuentes multimodo multiheterodinas, que son muy útiles para leer varias longitudes de onda ópticas al mismo tiempo en un solo fotodetector y distinguirlas entre sí. Esta característica hace que estas fuentes ópticas sean adecuadas para la lectura de sensores de fibra óptica. En esta tesis, analizo varios métodos de lectura de sensores de fibra óptica que mezclan técnicas multiheterodinas, técnicas multimodo y técnicas de interferometría para medir ultrasonidos y ondas mecánicas acústicas. Estas ondas mecánicas se producen cuando se aplican fuerzas periódicas a las estructuras mecánicas. Esto perturba la disposición de los átomos y puede provocar grietas o el colapso completo de la estructura. Por lo tanto, la caracterización y medida de dichas vibraciones son de gran importancia a la hora de monitorizar el estado de las estructuras y de realizar una evaluación no destructiva. Esta tesis tiene como objetivo resolver este problema mediante la implementación de varios sistemas que emplean tecnología basada en la luz para medir y caracterizar vibraciones mecánicas hasta frecuencias de 1 MHz y nivel de resolución sub-nano-deformación (menor que 10-3 ppm). Los sistemas propuestos implican nuevas características y parámetros más configurables en comparación con los enfoques más convencionales de procesos de lectura de sensores ópticos y, por lo tanto, ofrecen posibilidades más amplias. A lo largo de la tesis se presentan tres sistemas de medida: El primero está basado en un doble peine de frecuencias ópticas (dual comb) electroóptico que es capaz de leer sensores de fibra óptica basados en redes de Bragg (FBG) en régimen dinámico. Este sistema ha sido probado con una frecuencia máxima de detección de 120 kHz. En segundo lugar, se presenta un sistema basado en un selfheterodyne comb acustoóptico para leer sensores de fibra con distribución aleatoria de la rejilla en el núcleo (random grating). Este sistema es capaz de detectar señales de vibración de hasta 1 MHz. El tercer sistema presentado se basa en un doble peine de frecuencias ópticas (dual comb) electroóptico compacto que se utiliza para leer sensores FBG de baja reflectividad con un interferómetro de dispersión. Este sistema puede detectar hasta 135 kHz de vibraciones mecánicas. Los resultados de esta tesis mejoran los obtenidos en sistemas anteriores a fin de satisfacer las especificaciones requeridas hasta la fecha en esta aplicación, tanto en el ancho de banda mecánico como en la amplitud de la deformación. También muestran el potencial de estas fuentes multimodo para la detección óptica de alta precisión.Quiero agradecer la financiación de este trabajo dada por el Ministerio de Educación, Cultura y Deporte para la Formación de Profesorado Universitario FPU2016 (Beca FPU16/03695) y a través del proyecto PARAQUA (TEC2017-86271-R), así como por el Ministerio de Ciencia, Innovación y Universidades a través de las ayudas de movilidad EST18/00617.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Óscar Esteban Martínez.- Secretario: Marta Ruiz Llata.- Vocal: Pedro Alberto da Silva Jorg
    corecore