2,569 research outputs found

    Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion

    Get PDF
    We study the conditional preparation of single photons based on parametric downconversion, where the detection of one photon from a given pair heralds the existence of a single photon in the conjugate mode. We derive conditions on the modal characteristics of the photon pairs, which ensure that the conditionally prepared single photons are quantum-mechanically pure. We propose specific experimental techniques that yield photon pairs ideally suited for single-photon conditional preparation.Comment: 14 pages, 6 figure

    Applications of dynamic diffuse signal processing in sound reinforcement and reproduction.

    Get PDF
    Electroacoustic systems are subject to position-dependent frequency responses due to coherent interference between multiple sources and/or early reflections. Diffuse signal processing (DiSP) provides a mechanism for signal decorrelation to potentially alleviate this well-known issue in sound reinforcement and reproduction applications. Previous testing has indicated that DiSP provides reduced low-frequency spatial variance across wide audience areas, but in closed acoustic spaces is less effective due to coherent early reflections. In this paper, dynamic implementation of DiSP is examined, whereby the decorrelation algorithm varies over time, thus allowing for decorrelation between surface reflections and direct sounds. Potential applications of dynamic DiSP are explored in the context of sound reinforcement (subwoofers, stage monitoring) and sound reproduction (small-room low-frequency control, loudspeaker crossovers), with preliminary experimental results presented.N/

    Sunyaev-Zel'dovich clusters reconstruction in multiband bolometer camera surveys

    Full text link
    We present a new method for the reconstruction of Sunyaev-Zel'dovich (SZ) galaxy clusters in future SZ-survey experiments using multiband bolometer cameras such as Olimpo, APEX, or Planck. Our goal is to optimise SZ-Cluster extraction from our observed noisy maps. We wish to emphasize that none of the algorithms used in the detection chain is tuned on prior knowledge on the SZ -Cluster signal, or other astrophysical sources (Optical Spectrum, Noise Covariance Matrix, or covariance of SZ Cluster wavelet coefficients). First, a blind separation of the different astrophysical components which contribute to the observations is conducted using an Independent Component Analysis (ICA) method. Then, a recent non linear filtering technique in the wavelet domain, based on multiscale entropy and the False Discovery Rate (FDR) method, is used to detect and reconstruct the galaxy clusters. Finally, we use the Source Extractor software to identify the detected clusters. The proposed method was applied on realistic simulations of observations. As for global detection efficiency, this new method is impressive as it provides comparable results to Pierpaoli et al. method being however a blind algorithm. Preprint with full resolution figures is available at the URL: w10-dapnia.saclay.cea.fr/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=728Comment: Submitted to A&A. 32 Pages, text onl

    Signal decorrelation for sound reinforcement system crossovers

    Get PDF
    While sound reinforcement technology has progressed significantly in recent decades, aspects of system deployment remain largely unchanged, principally the use of stereo (or multiple mono) left/right configurations and crossover networks. As such, the issue of coherent interference between overlapping spatial and spectral coverage remains a challenge to system engineers. This paper focuses on the application of a perceptually transparent method of decorrelation, known as diffuse signal processing (DiSP), to minimize coherent interference within key elements of sound systems. Experiments were conducted with scale model loudspeakers in a hemi-anechoic chamber, mounting the systems onto an automated turntable to inspect the effectiveness of decorrelation over a wide polar range. Results indicate that the application of decorrelation has the potential to significantly reduce spatial variance across an audience area, although further work is necessary to optimize the decorrelation filters to improve performance consistency

    Ultrasound localization microscopy to image and assess microvasculature in a rat kidney.

    Get PDF
    The recent development of ultrasound localization microscopy, where individual microbubbles (contrast agents) are detected and tracked within the vasculature, provides new opportunities for imaging the vasculature of entire organs with a spatial resolution below the diffraction limit. In stationary tissue, recent studies have demonstrated a theoretical resolution on the order of microns. In this work, single microbubbles were localized in vivo in a rat kidney using a dedicated high frame rate imaging sequence. Organ motion was tracked by assuming rigid motion (translation and rotation) and appropriate correction was applied. In contrast to previous work, coherence-based non-linear phase inversion processing was used to reject tissue echoes while maintaining echoes from very slowly moving microbubbles. Blood velocity in the small vessels was estimated by tracking microbubbles, demonstrating the potential of this technique to improve vascular characterization. Previous optical studies of microbubbles in vessels of approximately 20 microns have shown that expansion is constrained, suggesting that microbubble echoes would be difficult to detect in such regions. We therefore utilized the echoes from individual MBs as microscopic sensors of slow flow associated with such vessels and demonstrate that highly correlated, wideband echoes are detected from individual microbubbles in vessels with flow rates below 2 mm/s

    Instrumental and Analytic Methods for Bolometric Polarimetry

    Get PDF
    We discuss instrumental and analytic methods that have been developed for the first generation of bolometric cosmic microwave background (CMB) polarimeters. The design, characterization, and analysis of data obtained using Polarization Sensitive Bolometers (PSBs) are described in detail. This is followed by a brief study of the effect of various polarization modulation techniques on the recovery of sky polarization from scanning polarimeter data. Having been successfully implemented on the sub-orbital Boomerang experiment, PSBs are currently operational in two terrestrial CMB polarization experiments (QUaD and the Robinson Telescope). We investigate two approaches to the analysis of data from these experiments, using realistic simulations of time ordered data to illustrate the impact of instrumental effects on the fidelity of the recovered polarization signal. We find that the analysis of difference time streams takes full advantage of the high degree of common mode rejection afforded by the PSB design. In addition to the observational efforts currently underway, this discussion is directly applicable to the PSBs that constitute the polarized capability of the Planck HFI instrument.Comment: 23 pages, 11 figures. for submission to A&

    Live sound loudspeaker array optimization for consistent directional coverage with diffuse radiation characteristics.

    Get PDF
    A central aim of sound reinforcement systems is to deliver consistent tonality across a wide audience area. Loudspeaker arrays are commonly used to meet this goal, where the upper and lower frequency bounds that can be spatially controlled are dictated by inter-element spacing and array width, respectively. This work focuses on the calculation of frequency-dependent complex coefficients for each array element using a modified Fourier technique to achieve a frequency-independent radiation pattern across an array’s functional region. In order to ensure efficiency, temporally diffuse impulses are utilized within the optimization procedure to avoid clustering of radiated energy at the center of an array and to provide a diffuse radiated field while maintaining the desired directional characteristics. Example applications for subwoofer arrays are presented, although the technique is applicable to any frequency range across the audible spectrum.N/

    Detecting gravitational waves from inspiraling binaries with a network of detectors : coherent versus coincident strategies

    Get PDF
    We compare two strategies of multi-detector detection of compact binary inspiral signals, namely, the coincidence and the coherent. For simplicity we consider here two identical detectors having the same power spectral density of noise, that of initial LIGO, located in the same place and having the same orientation. We consider the cases of independent noise as well as that of correlated noise. The coincident strategy involves separately making two candidate event lists, one for each detector, and from these choosing those pairs of events from the two lists which lie within a suitable parameter window, which then are called as coincidence detections. The coherent strategy on the other hand involves combining the data phase coherently, so as to obtain a single network statistic which is then compared with a single threshold. Here we attempt to shed light on the question as to which strategy is better. We compare the performances of the two methods by plotting the Receiver Operating Characteristics (ROC) for the two strategies. Several of the results are obtained analytically in order to gain insight. Further we perform numerical simulations in order to determine certain parameters in the analytic formulae and thus obtain the final complete results. We consider here several cases from the relatively simple to the astrophysically more relevant in order to establish our results. The bottom line is that the coherent strategy although more computationally expensive in general than the coincidence strategy, is superior to the coincidence strategy - considerably less false dismissal probability for the same false alarm probability in the viable false alarm regime.Comment: 18 pages, 10 figures, typo correcte

    Range Spectral Filtering in SAR Interferometry: Methods and Limitations

    Get PDF
    A geometrical decorrelation constitutes one of the sources of noise present in Synthetic Aperture Radar (SAR) interferograms. It comes from the different incidence angles of the two images used to form the interferograms, which cause a spectral (frequency) shift between them. A geometrical decorrelation must be compensated by a specific filtering technique known as range filtering, the goal of which is to estimate this spectral displacement and retain only the common parts of the images’ spectra, reducing the noise and improving the quality of the interferograms. Multiple range filters have been proposed in the literature. The most widely used methods are an adaptive filter approach, which estimates the spectral shift directly from the data; a method based on orbital information, which assumes a constant-slope (or flat) terrain; and slope-adaptive algorithms, which consider both orbital information and auxiliary topographic data. Their advantages and limitations are analyzed in this manuscript and, additionally, a new, more refined approach is proposed. Its goal is to enhance the filtering process by automatically adapting the filter to all types of surface variations using a multi-scale strategy. A pair of RADARSAT-2 images that mapped the mountainous area around the Etna volcano (Italy) are used for the study. The results show that filtering accuracy is improved with the new method including the steepest areas and vegetation-covered regions in which the performance of the original methods is limited.This work was supported by the Spanish Ministry of Science and Innovation (State Agency of Research, AEI) and the European Funds for Regional Development (ERFD) under Projects PID2020-117303GB-C21 and PID2020-117303-C22
    • 

    corecore