1,705 research outputs found

    Delay analysis of a two-class batch-service queue with class-dependent variable server capacity

    Get PDF
    In this paper, we analyse the delay of a random customer in a two-class batch-service queueing model with variable server capacity, where all customers are accommodated in a common single-server first-come-first-served queue. The server can only process customers that belong to the same class, so that the size of a batch is determined by the length of a sequence of same-class customers. This type of batch server can be found in telecommunications systems and production environments. We first determine the steady state partial probability generating function of the queue occupancy at customer arrival epochs. Using a spectral decomposition technique, we obtain the steady state probability generating function of the delay of a random customer. We also show that the distribution of the delay of a random customer corresponds to a phase-type distribution. Finally, some numerical examples are given that provide further insight in the impact of asymmetry and variance in the arrival process on the number of customers in the system and the delay of a random customer

    Analysis of a batch-service queue with variable service capacity, correlated customer types and generally distributed class-dependent service times

    Get PDF
    Queueing models with batch service have been studied frequently, for instance in the domain of telecommunications or manufacturing. Although the batch server's capacity may be variable in practice, only a few authors have included variable capacity in their models. We analyse a batch server with multiple customer classes and a variable service capacity that depends on both the number of waiting customers and their classes. The service times are generally distributed and class-dependent. These features complicate the analysis in a non-trivial way. We tackle it by examining the system state at embedded points, and studying the resulting Markov Chain. We first establish the joint probability generating function (pgf) of the service capacity and the number of customers left behind in the queue immediately after service initiation epochs. From this joint pgf, we extract the pgf for the number of customers in the queue and in the system respectively at service initiation epochs and departure epochs, and the pgf of the actual server capacity. Combined with additional techniques, we also obtain the pgf of the queue and system content at customer arrival epochs and random slot boundaries, and the pgf of the delay of a random customer. In the numerical experiments, we focus on the impact of correlation between the classes of consecutive customers, and on the influence of different service time distributions on the system performance. (C) 2019 Elsevier B.V. All rights reserved

    Power series approximations for two-class generalized processor sharing systems

    Get PDF
    We develop power series approximations for a discrete-time queueing system with two parallel queues and one processor. If both queues are nonempty, a customer of queue 1 is served with probability beta, and a customer of queue 2 is served with probability 1-beta. If one of the queues is empty, a customer of the other queue is served with probability 1. We first describe the generating function U(z (1),z (2)) of the stationary queue lengths in terms of a functional equation, and show how to solve this using the theory of boundary value problems. Then, we propose to use the same functional equation to obtain a power series for U(z (1),z (2)) in beta. The first coefficient of this power series corresponds to the priority case beta=0, which allows for an explicit solution. All higher coefficients are expressed in terms of the priority case. Accurate approximations for the mean stationary queue lengths are obtained from combining truncated power series and Pad, approximation

    Rejoinder on: queueing models for the analysis of communication systems

    Get PDF
    In this rejoinder, we respond to the comments and questions of three discussants of our paper on queueing models for the analysis of communication systems. Our responses are structured around two main topics: discrete-time modeling and further extensions of the presented queueing analysis

    An acceleration simulation method for power law priority traffic

    Get PDF
    A method for accelerated simulation for simulated self-similar processes is proposed. This technique simplifies the simulation model and improves the efficiency by using excess packets instead of packet-by-packet source traffic for a FIFO and non-FIFO buffer scheduler. In this research is focusing on developing an equivalent model of the conventional packet buffer that can produce an output analysis (which in this case will be the steady state probability) much faster. This acceleration simulation method is a further development of the Traffic Aggregation technique, which had previously been applied to FIFO buffers only and applies the Generalized Ballot Theorem to calculate the waiting time for the low priority traffic (combined with prior work on traffic aggregation). This hybrid method is shown to provide a significant reduction in the process time, while maintaining queuing behavior in the buffer that is highly accurate when compared to results from a conventional simulatio
    corecore