1,485 research outputs found

    Analysis of the hydrostatic Stokes problem and finite-element approximation in unstructured meshes

    Get PDF
    The stability of velocity and pressure mixed finite-element approximations in general meshes of the hydrostatic Stokes problem is studied, where two “inf-sup” conditions appear associated to the two constraints of the problem; namely incompressibility and hydrostatic pressure. Since these two constraints have different properties, it is not easy to choose finite element spaces satisfying both. From the analytical point of view, two main results are established; the stability of an anisotropic approximation of the velocity (using different spaces for horizontal and vertical velocities) with piecewise constant pressures, and the unstability of standard (isotropic) approximations which are stable for the Stokes problem, like the mini-element or the Taylor-Hood element. Moreover, we give some numerical simulations, which agree with the previous analytical results and allow us to conjecture the stability of some anisotropic approximations of the velocity with continuous piecewise linear pressure in unstructured meshes.Dirección General de Investigación (Ministerio de Educación y Ciencia)Junta de Andalucí

    Stabilized Schemes for the Hydrostatic Stokes Equations

    Get PDF
    Some new stable finite element (FE) schemes are presented for the hydrostatic Stokes system or primitive equations of the ocean. It is known that the stability of the mixed formulation ap- proximation for primitive equations requires the well-known Ladyzhenskaya–Babuˇska–Brezzi condi- tion related to the Stokes problem and an extra inf-sup condition relating the pressure and the vertical velocity. The main goal of this paper is to avoid this extra condition by adding a residual stabilizing term to the vertical momentum equation. Then, the stability for Stokes-stable FE combinations is extended to the primitive equations and some error estimates are provided using Taylor–Hood P2 –P1 or miniele- ment (P1 +bubble)–P1 FE approximations, showing the optimal convergence rate in the P2 –P1 case. These results are also extended to the anisotropic (nonhydrostatic) problem. On the other hand, by adding another residual term to the continuity equation, a better approximation of the vertical derivative of pressure is obtained. In this case, stability and error estimates including this better approximation are deduced, where optimal convergence rate is deduced in the (P 1 +bubble)–P1 case. Finally, some numerical experiments are presented supporting previous results

    Solving the Poisson equation on small aspect ratio domains using unstructured meshes

    Full text link
    We discuss the ill conditioning of the matrix for the discretised Poisson equation in the small aspect ratio limit, and motivate this problem in the context of nonhydrostatic ocean modelling. Efficient iterative solvers for the Poisson equation in small aspect ratio domains are crucial for the successful development of nonhydrostatic ocean models on unstructured meshes. We introduce a new multigrid preconditioner for the Poisson problem which can be used with finite element discretisations on general unstructured meshes; this preconditioner is motivated by the fact that the Poisson problem has a condition number which is independent of aspect ratio when Dirichlet boundary conditions are imposed on the top surface of the domain. This leads to the first level in an algebraic multigrid solver (which can be extended by further conventional algebraic multigrid stages), and an additive smoother. We illustrate the method with numerical tests on unstructured meshes, which show that the preconditioner makes a dramatic improvement on a more standard multigrid preconditioner approach, and also show that the additive smoother produces better results than standard SOR smoothing. This new solver method makes it feasible to run nonhydrostatic unstructured mesh ocean models in small aspect ratio domains.Comment: submitted to Ocean Modellin

    Addressing the challenges of implementation of high-order finite volume schemes for atmospheric dynamics of unstructured meshes

    Get PDF
    The solution of the non-hydrostatic compressible Euler equations using Weighted Essentially Non-Oscillatory (WENO) schemes in two and three-dimensional unstructured meshes, is presented. Their key characteristics are their simplicity; accuracy; robustness; non-oscillatory properties; versatility in handling any type of grid topology; computational and parallel efficiency. Their defining characteristic is a non-linear combination of a series of high-order reconstruction polynomials arising from a series of reconstruction stencils. In the present study an explicit TVD Runge-Kutta 3rd -order method is employed due to its lower computational resources requirement compared to implicit type time advancement methods. The WENO schemes (up to 5th -order) are applied to the two dimensional and three dimensional test cases: a 2D rising
    corecore