2,045 research outputs found

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    Performance of Spatial Modulation using Measured Real-World Channels

    Full text link
    In this paper, for the first time real-world channel measurements are used to analyse the performance of spatial modulation (SM), where a full analysis of the average bit error rate performance (ABER) of SM using measured urban correlated and uncorrelated Rayleigh fading channels is provided. The channel measurements are taken from an outdoor urban multiple input multiple output (MIMO) measurement campaign. Moreover, ABER performance results using simulated Rayleigh fading channels are provided and compared with a derived analytical bound for the ABER of SM, and the ABER results for SM using the measured urban channels. The ABER results using the measured urban channels validate the derived analytical bound and the ABER results using the simulated channels. Finally, the ABER of SM is compared with the performance of spatial multiplexing (SMX) using the measured urban channels for small and large scale MIMO. It is shown that SM offers nearly the same or a slightly better performance than SMX for small scale MIMO. However, SM offers large reduction in ABER for large scale MIMO.Comment: IEEE Vehicular Technology Conference Fall 2013 (VTC-Fall 2013), Accepte

    Codebook Based Hybrid Precoding for Millimeter Wave Multiuser Systems

    Get PDF
    In millimeter wave (mmWave) systems, antenna architecture limitations make it difficult to apply conventional fully digital precoding techniques but call for low cost analog radio-frequency (RF) and digital baseband hybrid precoding methods. This paper investigates joint RF-baseband hybrid precoding for the downlink of multiuser multi-antenna mmWave systems with a limited number of RF chains. Two performance measures, maximizing the spectral efficiency and the energy efficiency of the system, are considered. We propose a codebook based RF precoding design and obtain the channel state information via a beam sweep procedure. Via the codebook based design, the original system is transformed into a virtual multiuser downlink system with the RF chain constraint. Consequently, we are able to simplify the complicated hybrid precoding optimization problems to joint codeword selection and precoder design (JWSPD) problems. Then, we propose efficient methods to address the JWSPD problems and jointly optimize the RF and baseband precoders under the two performance measures. Finally, extensive numerical results are provided to validate the effectiveness of the proposed hybrid precoders.Comment: 35 pages, 9 figures, to appear in Trans. on Signal Process, 201
    corecore