584 research outputs found

    Myths and Legends of the Baldwin Effect

    Get PDF
    This position paper argues that the Baldwin effect is widely misunderstood by the evolutionary computation community. The misunderstandings appear to fall into two general categories. Firstly, it is commonly believed that the Baldwin effect is concerned with the synergy that results when there is an evolving population of learning individuals. This is only half of the story. The full story is more complicated and more interesting. The Baldwin effect is concerned with the costs and benefits of lifetime learning by individuals in an evolving population. Several researchers have focussed exclusively on the benefits, but there is much to be gained from attention to the costs. This paper explains the two sides of the story and enumerates ten of the costs and benefits of lifetime learning by individuals in an evolving population. Secondly, there is a cluster of misunderstandings about the relationship between the Baldwin effect and Lamarckian inheritance of acquired characteristics. The Baldwin effect is not Lamarckian. A Lamarckian algorithm is not better for most evolutionary computing problems than a Baldwinian algorithm. Finally, Lamarckian inheritance is not a better model of memetic (cultural) evolution than the Baldwin effect

    Adaptive evolution in static and dynamic environments

    Get PDF
    This thesis provides a framework for describing a canonical evolutionary system. Populations of individuals are envisaged as traversing a search space structured by genetic and developmental operators under the influence of selection. Selection acts on individuals' phenotypic expressions, guiding the population over an evaluation landscape, which describes an idealised evaluation surface over the phenotypic space. The corresponding valuation landscape describes evaluations over the genotypic space and may be transformed by within generation adaptive (learning) or maladaptive (fault induction) local search. Populations subjected to particular genetic and selection operators are claimed to evolve towards a region of the valuation landscape with a characteristic local ruggedness, as given by the runtime operator correlation coefficient. This corresponds to the view of evolution discovering an evolutionarily stable population, or quasi-species, held in a state of dynamic equilibrium by the operator set and evaluation function. This is demonstrated by genetic algorithm experiments using the NK landscapes and a novel, evolvable evaluation function, The Tower of Babel. In fluctuating environments of varying temporal ruggedness, different operator sets are correspondingly more or less adapted. Quantitative genetics analyses of populations in sinusoidally fluctuating conditions are shown to describe certain well known electronic filters. This observation suggests the notion of Evolutionary Signal Processing. Genetic algorithm experiments in which a population tracks a sinusoidally fluctuating optimum support this view. Using a self-adaptive mutation rate, it is possible to tune the evolutionary filter to the environmental frequency. For a time varying frequency, the mutation rate reacts accordingly. With local search, the valuation landscape is transformed through temporal smoothing. By coevolving modifier genes for individual learning and the rate at which the benefits may be directly transmitted to the next generation, the relative adaptedness of individual learning and cultural inheritance according to the rate of environmental change is demonstrated

    The effect of resource limitation on the temperature-dependence of mosquito population fitness

    Get PDF
    Laboratory-derived temperature dependencies of life history traits are increasingly being used to make mechanistic predictions for how climatic warming will affect vector-borne disease dynamics, partially by affecting abundance dynamics of the vector population. These temperature-trait relationships are typically estimated from juvenile populations reared on optimal resource supply, even though natural populations of vectors are expected to experience variation in resource supply, including intermittent resource limitation. Using laboratory experiments on the mosquito Aedes aegypti, a principal arbovirus vector, combined with stage-structured population modelling, we show that low-resource supply in the juvenile life stages significantly depresses the vector’s maximal population growth rate across the entire temperature range (22–32°C) and causes it to peak at a lower temperature than at high-resource supply. This effect is primarily driven by an increase in juvenile mortality and development time, combined with a decrease in adult size with temperature at low-resource supply. Our study suggests that most projections of temperature-dependent vector abundance and disease transmission are likely to be biased because they are based on traits measured under optimal resource supply. Our results provide compelling evidence for future studies to consider resource supply when predicting the effects of climate and habitat change on vector-borne disease transmission, disease vectors and other arthropods

    Prescriptive formalism for constructing domain-specific evolutionary algorithms

    Get PDF
    It has been widely recognised in the computational intelligence and machine learning communities that the key to understanding the behaviour of learning algorithms is to understand what representation is employed to capture and manipulate knowledge acquired during the learning process. However, traditional evolutionary algorithms have tended to employ a fixed representation space (binary strings), in order to allow the use of standardised genetic operators. This approach leads to complications for many problem domains, as it forces a somewhat artificial mapping between the problem variables and the canonical binary representation, especially when there are dependencies between problem variables (e.g. problems naturally defined over permutations). This often obscures the relationship between genetic structure and problem features, making it difficult to understand the actions of the standard genetic operators with reference to problem-specific structures. This thesis instead advocates m..

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Assessing the sublethal impacts of anthropogenic stressors on fish: an energy‐budget approach

    Get PDF
    Fish are increasingly exposed to anthropogenic stressors from human developments and activities such as agriculture, urbanization, pollution and fishing. Lethal impacts of these stressors have been studied but the potential sublethal impacts, such as behavioural changes or reduced growth and reproduction, have often been overlooked. Unlike mortality, sublethal impacts are broad and difficult to quantify experimentally. As a result, sublethal impacts are often ignored in regulatory frameworks and management decisions. Building on established fish bioenergetic models, we present a general method for using the population consequences of disturbance framework to investigate how stressors influence ecologically relevant life processes of fish. We partition impact into the initial energetic cost of attempts to escape from the stressor, followed by the energetic impacts of any injury or behavioural change, and their consequent effects on life processes. As a case study, we assess the sublethal effects of catch and release angling for the European sea bass (Dicentrachus labrax, Moronidae), a popular target species for recreational fishers. The energy budget model described is not intended to replace existing experimental approaches but does provide a simple way to account for sublethal impacts in assessment of the impact of recreational fisheries and aid development of robust management approaches. There is potential to apply our energy budget approach to investigate a broad range of stressors and cumulative impacts for many fish species while also using individual‐based models to estimate population‐level impacts

    An application of genetic algorithms to chemotherapy treatment.

    Get PDF
    The present work investigates methods for optimising cancer chemotherapy within the bounds of clinical acceptability and making this optimisation easily accessible to oncologists. Clinical oncologists wish to be able to improve existing treatment regimens in a systematic, effective and reliable way. In order to satisfy these requirements a novel approach to chemotherapy optimisation has been developed, which utilises Genetic Algorithms in an intelligent search process for good chemotherapy treatments. The following chapters consequently address various issues related to this approach. Chapter 1 gives some biomedical background to the problem of cancer and its treatment. The complexity of the cancer phenomenon, as well as the multi-variable and multi-constrained nature of chemotherapy treatment, strongly support the use of mathematical modelling for predicting and controlling the development of cancer. Some existing mathematical models, which describe the proliferation process of cancerous cells and the effect of anti-cancer drugs on this process, are presented in Chapter 2. Having mentioned the control of cancer development, the relevance of optimisation and optimal control theory becomes evident for achieving the optimal treatment outcome subject to the constraints of cancer chemotherapy. A survey of traditional optimisation methods applicable to the problem under investigation is given in Chapter 3 with the conclusion that the constraints imposed on cancer chemotherapy and general non-linearity of the optimisation functionals associated with the objectives of cancer treatment often make these methods of optimisation ineffective. Contrariwise, Genetic Algorithms (GAs), featuring the methods of evolutionary search and optimisation, have recently demonstrated in many practical situations an ability to quickly discover useful solutions to highly-constrained, irregular and discontinuous problems that have been difficult to solve by traditional optimisation methods. Chapter 4 presents the essence of Genetic Algorithms, as well as their salient features and properties, and prepares the ground for the utilisation of Genetic Algorithms for optimising cancer chemotherapy treatment. The particulars of chemotherapy optimisation using Genetic Algorithms are given in Chapter 5 and Chapter 6, which present the original work of this thesis. In Chapter 5 the optimisation problem of single-drug chemotherapy is formulated as a search task and solved by several numerical methods. The results obtained from different optimisation methods are used to assess the quality of the GA solution and the effectiveness of Genetic Algorithms as a whole. Also, in Chapter 5 a new approach to tuning GA factors is developed, whereby the optimisation performance of Genetic Algorithms can be significantly improved. This approach is based on statistical inference about the significance of GA factors and on regression analysis of the GA performance. Being less computationally intensive compared to the existing methods of GA factor adjusting, the newly developed approach often gives better tuning results. Chapter 6 deals with the optimisation of multi-drug chemotherapy, which is a more practical and challenging problem. Its practicality can be explained by oncologists' preferences to administer anti-cancer drugs in various combinations in order to better cope with the occurrence of drug resistant cells. However, the imposition of strict toxicity constraints on combining various anticancer drugs together, makes the optimisation problem of multi-drug chemotherapy very difficult to solve, especially when complex treatment objectives are considered. Nevertheless, the experimental results of Chapter 6 demonstrate that this problem is tractable to Genetic Algorithms, which are capable of finding good chemotherapeutic regimens in different treatment situations. On the basis of these results a decision has been made to encapsulate Genetic Algorithms into an independent optimisation module and to embed this module into a more general and user-oriented environment - the Oncology Workbench. The particulars of this encapsulation and embedding are also given in Chapter 6. Finally, Chapter 7 concludes the present work by summarising the contributions made to the knowledge of the subject treated and by outlining the directions for further investigations. The main contributions are: (1) a novel application of the Genetic Algorithm technique in the field of cancer chemotherapy optimisation, (2) the development of a statistical method for tuning the values of GA factors, and (3) the development of a robust and versatile optimisation utility for a clinically usable decision support system. The latter contribution of this thesis creates an opportunity to widen the application domain of Genetic Algorithms within the field of drug treatments and to allow more clinicians to benefit from utilising the GA optimisation

    A model for brain life history evolution

    Get PDF
    This work was funded by Swiss NSF grant PP00P3-146340 to LL http://www.snf.ch/en/Pages/default.aspx.Complex cognition and relatively large brains are distributed across various taxa, and many primarily verbal hypotheses exist to explain such diversity. Yet, mathematical approaches formalizing verbal hypotheses would help deepen the understanding of brain and cognition evolution. With this aim, we combine elements of life history and metabolic theories to formulate a metabolically explicit mathematical model for brain life history evolution. We assume that some of the brain’s energetic expense is due to production (learning) and maintenance (memory) of energy-extraction skills (or cognitive abilities, knowledge, information, etc.). We also assume that individuals use such skills to extract energy from the environment, and can allocate this energy to grow and maintain the body, including brain and reproductive tissues. The model can be used to ask what fraction of growth energy should be allocated at each age, given natural selection, to growing brain and other tissues under various biological settings. We apply the model to find uninvadable allocation strategies under a baseline setting (“me vs nature”), namely when energy-extraction challenges are environmentally determined and are overcome individually but possibly with maternal help, and use modern-human data to estimate model’s parameter values. The resulting uninvadable strategies yield predictions for brain and body mass throughout ontogeny and for the ages at maturity, adulthood, and brain growth arrest. We find that: (1) a me-vs-nature setting is enough to generate adult brain and body mass of ancient human scale and a sequence of childhood, adolescence, and adulthood stages; (2) large brains are favored by intermediately challenging environments, moderately effective skills, and metabolically expensive memory; and (3) adult skill is proportional to brain mass when metabolic costs of memory saturate the brain metabolic rate allocated to skills.Publisher PDFPeer reviewe

    Meta-Stability of Interacting Adaptive Agents

    Get PDF
    The adaptive process can be considered as being driven by two fundamental forces: exploitation and exploration. While the explorative process may be deterministic, the resultant effect may be stochastic. Stochastic effects may also exist in the expoitative process. This thesis considers the effects of stochastic fluctuations inherent in the adaptive process on the behavioural dynamics of a population of interacting agents. It is hypothesied that in such systems, one or more attractors in the population space exist; and that transitions between these attractors can occur; either as a result of internal shocks (sampling fluctuations) or external shocks (environmental changes). It is further postulated that such transitions in the (microscopic) population space may be observable as phase transitions in the behaviour of macroscopic observables. A simple model of a stock market, driven by asexual reproduction (selection plus mutation) is put forward as a testbed. A statistical dynamics analysis of the behaviour of this market is then developed. Fixed points in the space of agent behaviours are located, and market dynamics are compared to the analytic predictions. Additionally, an analysis of the relative importance of internal shocks(sampling fluctuations) and external shocks( the stock dividend sequence) across varying population size is presented
    corecore