396,816 research outputs found

    Cost-benefit analysis of ecological networks assessed through spatial analysis of ecosystem services

    Get PDF
    1.The development of ecological networks could enhance the ability of species to disperse across fragmented landscapes and could mitigate against the negative impacts of climate change. The development of such networks will require widespread ecological restoration at the landscape scale, which is likely to be costly. However, little information is available regarding the cost-effectiveness of restoration approaches. 2.We address this knowledge gap by examining the potential impact of landscape-scale habitat restoration on the value of multiple ecosystem services across the catchment of the River Frome in Dorset, England. This was achieved by mapping the market value of four ecosystem services (carbon storage, crops, livestock and timber) under three different restoration scenarios, estimating restoration costs, and calculating net benefits. 3.The non-market value of additional services (cultural, aesthetic and recreational value) was elicited from local stakeholders using an online survey tool. Flood risk was assessed using a scoring approach. Spatial Multi-Criteria Analysis (MCA) was conducted, incorporating both market and non-market values, to evaluate the relative benefits of restoration scenarios. These were compared with impacts of restoration on biodiversity value. 4.Multi-Criteria Analysis results consistently ranked restoration scenarios above a non-restoration comparator, reflecting the increased provision of multiple ecosystem services. Restoration scenarios also provided benefits to biodiversity, in terms of increased species richness and habitat connectivity. However, restoration costs consistently exceeded the market value of ecosystem services. 5.Synthesis and applications. Establishment of ecological networks through ecological restoration is unlikely to deliver net economic benefits in landscapes dominated by agricultural land use. This reflects the high costs of ecological restoration in such landscapes. The cost-effectiveness of ecological networks will depend on how the benefits provided to people are valued, and on how the value of non-market benefits are weighted against the costs of reduced agricultural and timber production. Future plans for ecological restoration should incorporate local stakeholder values, to ensure that benefits to people are maximised. © 2012 The Authors. Journal of Applied Ecology © 2012 British Ecological Society

    Distributed filtering of networked dynamic systems with non-gaussian noises over sensor networks: A survey

    Get PDF
    summary:Sensor networks are regarded as a promising technology in the field of information perception and processing owing to the ease of deployment, cost-effectiveness, flexibility, as well as reliability. The information exchange among sensors inevitably suffers from various network-induced phenomena caused by the limited resource utilization and complex application scenarios, and thus is required to be governed by suitable resource-saving communication mechanisms. It is also noteworthy that noises in system dynamics and sensor measurements are ubiquitous and in general unknown but can be bounded, rather than follow specific Gaussian distributions as assumed in Kalman-type filtering. Particular attention of this paper is paid to a survey of recent advances in distributed filtering of networked dynamic systems with non-Gaussian noises over sensor networks. First, two types of widely employed structures of distributed filters are reviewed, the corresponding analysis is systematically addressed, and some interesting results are provided. The inherent purpose of adding consensus terms into the distributed filters is profoundly disclosed. Then, some representative models characterizing various network-induced phenomena are reviewed and their corresponding analytical strategies are exhibited in detail. Furthermore, recent results on distributed filtering with non-Gaussian noises are sorted out in accordance with different network-induced phenomena and system models. Another emphasis is laid on recent developments of distributed filtering with various communication scheduling, which are summarized based on the inherent characteristics of their dynamic behavior associated with mathematical models. Finally, the state-of-the-art of distributed filtering and challenging issues, ranging from scalability, security to applications, are raised to guide possible future research

    Assessing the umbrella value of a range-wide conservation network for Jaguars (Panthera onca)

    Get PDF
    Umbrella species are employed as conservation short-cuts for the design of reserves or reserve networks. However, empirical data on the effectiveness of umbrellas is equivocal, which has prevented more widespread application of this conservation strategy. We perform a novel, large-scale evaluation of umbrella species by assessing the potential umbrella value of a jaguar (Panthera onca) conservation network (consisting of viable populations and corridors) that extends from Mexico to Argentina. Using species richness, habitat quality, and fragmentation indices of similar to 1500 co-occurring mammal species, we show that jaguar populations and corridors overlap a substantial amount and percentage of high-quality habitat for co-occurring mammals and that the jaguar network performs better than random networks in protecting high-quality, interior habitat. Significantly, the effectiveness of the jaguar network as an umbrella would not have been noticeable had we focused on species richness as our sole metric of umbrella utility. Substantial inter-order variability existed, indicating the need for complementary conservation strategies for certain groups of mammals. We offer several reasons for the positive result we document, including the large spatial scale of our analysis and our focus on multiple metrics of umbrella effectiveness. Taken together, our results demonstrate that a regional, single-species conservation strategy can serve as an effective umbrella for the larger community and should help conserve viable populations and connectivity for a suite of co-occurring mammals. Current and future range-wide planning exercises for other large predators may therefore have important umbrella benefits

    Smartening the Environment using Wireless Sensor Networks in a Developing Country

    Get PDF
    The miniaturization process of various sensing devices has become a reality by enormous research and advancements accomplished in Micro Electro-Mechanical Systems (MEMS) and Very Large Scale Integration (VLSI) lithography. Regardless of such extensive efforts in optimizing the hardware, algorithm, and protocols for networking, there still remains a lot of scope to explore how these innovations can all be tied together to design Wireless Sensor Networks (WSN) for smartening the surrounding environment for some practical purposes. In this paper we explore the prospects of wireless sensor networks and propose a design level framework for developing a smart environment using WSNs, which could be beneficial for a developing country like Bangladesh. In connection to this, we also discuss the major aspects of wireless sensor networks.Comment: 5 page

    Dynamic Geospatial Spectrum Modelling: Taxonomy, Options and Consequences

    Get PDF
    Much of the research in Dynamic Spectrum Access (DSA) has focused on opportunistic access in the temporal domain. While this has been quite useful in establishing the technical feasibility of DSA systems, it has missed large sections of the overall DSA problem space. In this paper, we argue that the spatio-temporal operating context of specific environments matters to the selection of the appropriate technology for learning context information. We identify twelve potential operating environments and compare four context awareness approaches (on-board sensing, databases, sensor networks, and cooperative sharing) for these environments. Since our point of view is overall system cost and efficiency, this analysis has utility for those regulators whose objectives are reducing system costs and enhancing system efficiency. We conclude that regulators should pay attention to the operating environment of DSA systems when determining which approaches to context learning to encourage
    corecore