88 research outputs found

    Towards Secure and Usable Leakage-Resilient Password Entry

    Get PDF
    Password leakage is one of the most common security threats for pervasive password based user authentication. The design of a secure and usable password entry against password leakage remains a challenge since twenty year ago when the first academic proposal attempted to address it. This dissertation focuses on investigating the difficulty in designing leakage-resilient password entry (LRPE) schemes and exploring the feasibility of constructing secure and usable LRPE schemes with the assistance of state-of-the-art technology. The first work in this dissertation reveals the infeasibility of designing practical LRPE schemes in the absence of trusted devices by investigating the inherent tradeoff between security and usability in LRPE design. We start with demonstrating that most of the existing LRPE schemes without using trusted devices are subject to two types of generic attacks - brute force and statistical attacks, whose power has been underestimated in the literature. In order to defend against these two generic attacks, we introduce five design principles that are necessary to achieve leakage resilience in the absence of trusted devices. We show that these attacks cannot be effectively mitigated without significantly sacrificing the usability of LRPE schemes. To better understand the tradeoff between security and usability of LRPE schemes, we further propose a quantitative analysis framework on usability costs of password entry schemes based on experimental psychology. Our analysis shows that a secure LRPE scheme in practical settings always imposes a considerable amount of cognitive workload on its users, which indicates the inherent limitations of such schemes and in turn implies that an LRPE scheme has to incorporate certain trusted device in order to be both secure and usable. Following the first work, we further explore the feasibility of designing practical LRPE schemes by analyzing the existing LRPE schemes that utilize trusted devices. We develop a broad set of design metrics which cover three aspects in evaluating LRPE schemes, including quantitative usability costs with specified security strength, built-in security, and universal accessibility. We apply these design metrics on existing LRPE schemes, revealing that all the schemes have limitations, which may explain why none of them are widely adopted. However, our further analysis indicates that it is possible to overcome these limitations by improving the design according to the proposed metrics. Guided by these design metrics, we propose a secure and usable LRPE scheme leveraging on the touchscreen feature of mobile devices. These devices provide additional features such as touchscreen that are not available in the traditional settings, which makes it possible to achieve both security and usability objectives that are difficult to achieve in the past. Our scheme named CoverPad achieves leakage resilience while retaining most benefits of legacy passwords. The usability of CoverPad is evaluated with an extended user study which includes additional test conditions related to time pressure, distraction, and mental workload. These test conditions simulate common situations for a password entry scheme used on a daily basis, which have not been evaluated in the prior literature. The results of our user study show the impacts of these test conditions on user performance as well as the practicability of the proposed scheme. This dissertation makes contributions on understanding and solving the problem of designing secure and usable LRPE schemes. The proposed design principles, design metrics, analysis and evaluation methodologies are applicable to not only LRPE schemes but also generic user authentication schemes, which provide useful insights for the field of user authentication research. The proposed scheme has been implemented as a prototype, which can be used to effectively defend against password leakage during password entry

    GRAPHICAL ONE-TIME PASSWORD AUTHENTICATION

    Get PDF
    Complying with a security policy often requires users to create long and complex passwords to protect their accounts. However, remembering such passwords appears difficult for many and may lead to insecure practices, such as choosing weak passwords or writing them down. One-Time Passwords (OTPs) aim to overcome such problems; however, most implemented OTP techniques require special hardware, which not only adds costs, but also raises issues regarding availability. This type of authentication mechanism is mostly adopted by online banking systems to secure their clients’ accounts. However, carrying around authentication tokens was found to be an inconvenient experience for many customers. Not only the inconvenience, but if the token was unavailable, for any reason, this would prevent customers from accessing their accounts securely. In contrast, there is the potential to use graphical passwords as an alternative authentication mechanism designed to aid memorability and ease of use. The idea of this research is to combine the usability of recognition-based and draw-based graphical passwords with the security of OTP. A new multi-level user-authentication solution known as: Graphical One-Time Password (GOTPass) was proposed and empirically evaluated in terms of usability and security aspects. The usability experiment was conducted during three separate sessions, which took place over five weeks, to assess the efficiency, effectiveness, memorability and user satisfaction of the new scheme. The results showed that users were able to easily create and enter their credentials as well as remember them over time. Eighty-one participants carried out a total of 1,302 login attempts with a 93% success rate and an average login time of 24.5 seconds. With regard to the security evaluation, the research simulated three common types of graphical password attacks (guessing, intersection, and shoulder-surfing). The participants’ task was to act as attackers to try to break into the system. The GOTPass scheme showed a high resistance capability against the attacks, as only 3.3% of the 690 total attempts succeeded in compromising the system.King Abdulaziz City for Science and Technolog

    Modelling Anti-Phishing Authentication Ceremonies

    Get PDF

    Persuasive by design: a model and toolkit for designing evidence-based interventions

    Get PDF

    Improving Authentication for Users via Better Understanding Password Use and Abuse

    Get PDF
    Passwords are our primary form of authentication. Yet passwords are a major vulnerability for computer systems due to their predictable nature, in fact Florêncio et al., conclude that human limitations makes what is often considered to be “proper password use” impossible [52]. It is vital we improve authentication with respect to both security and usability. The aim of this research is to investigate password use and abuse in order to improve authentication for users. We investigate circulated password advice that claims to help in this security fight. We find that it is contradictory, often at odds with best practice and research findings, and can be ambiguous and taxing on users. We complete a user study investigating user and administrator perceptions of the password advice collected. We leverage knowledge of security benefits, usability and organisation costs to investigate the trade-offs that exist when security advice is enforced. To improve password systems, effective and accurate information is needed regarding the prevalence of security vulnerabilities. We develop a guessability metric which produces guessing success results that are independent of the underlying distribution of the data. We use this to prove that small password breaches can lead to major vulnerabilities to entire cohorts of other users. We also demonstrate that a tailored learning algorithm can actively learn characteristics of the passwords it is guessing, and that it can leverage this information to improve its guessing. We demonstrate that characteristics such as nationality can be derived from data and used to improve guessing, this reduces security in an online environment and potentially leaks private information about cohorts of users. Finally, we design models to quantify the effectiveness of security policies. We demonstrate the value of the NIST 2017 guidelines. We find that if an organisation is willing to bear costs on themselves, they can significantly improve usability for their end-users, and simultaneously increase their security

    Authorization and authentication strategy for mobile highly constrained edge devices

    Get PDF
    The rising popularity of mobile devices has driven the need for faster connection speeds and more flexible authentication and authorization methods. This project aims to develop and implement an innovative system that provides authentication and authorization for both the device and the user. It also facilitates real-time user re-authentication within the application, ensuring transparency throughout the process. Additionally, the system aims to establish a secure architecture that minimizes the computational requirements on the client's device, thus optimizing the device's battery life. The achieved results have demonstrated satisfactory outcomes, validating the effectiveness of the proposed solution. However, there is still potential for further improvement to enhance its overall performance

    Guessing human-chosen secrets

    Get PDF
    Authenticating humans to computers remains a notable weak point in computer security despite decades of effort. Although the security research community has explored dozens of proposals for replacing or strengthening passwords, they appear likely to remain entrenched as the standard mechanism of human-computer authentication on the Internet for years to come. Even in the optimistic scenario of eliminating passwords from most of today's authentication protocols using trusted hardware devices or trusted servers to perform federated authentication, passwords will persist as a means of "last-mile" authentication between humans and these trusted single sign-on deputies. This dissertation studies the difficulty of guessing human-chosen secrets, introducing a sound mathematical framework modeling human choice as a skewed probability distribution. We introduce a new metric, alpha-guesswork, which can accurately models the resistance of a distribution against all possible guessing attacks. We also study the statistical challenges of estimating this metric using empirical data sets which can be modeled as a large random sample from the underlying probability distribution. This framework is then used to evaluate several representative data sets from the most important categories of human-chosen secrets to provide reliable estimates of security against guessing attacks. This includes collecting the largest-ever corpus of user-chosen passwords, with nearly 70 million, the largest list of human names ever assembled for research, the largest data sets of real answers to personal knowledge questions and the first data published about human choice of banking PINs. This data provides reliable numbers for designing security systems and highlights universal limitations of human-chosen secrets

    Digital Interaction and Machine Intelligence

    Get PDF
    This book is open access, which means that you have free and unlimited access. This book presents the Proceedings of the 9th Machine Intelligence and Digital Interaction Conference. Significant progress in the development of artificial intelligence (AI) and its wider use in many interactive products are quickly transforming further areas of our life, which results in the emergence of various new social phenomena. Many countries have been making efforts to understand these phenomena and find answers on how to put the development of artificial intelligence on the right track to support the common good of people and societies. These attempts require interdisciplinary actions, covering not only science disciplines involved in the development of artificial intelligence and human-computer interaction but also close cooperation between researchers and practitioners. For this reason, the main goal of the MIDI conference held on 9-10.12.2021 as a virtual event is to integrate two, until recently, independent fields of research in computer science: broadly understood artificial intelligence and human-technology interaction
    • …
    corecore