25 research outputs found

    Collaborative adaptive filtering for machine learning

    No full text
    Quantitative performance criteria for the analysis of machine learning architectures and algorithms have long been established. However, qualitative performance criteria, which identify fundamental signal properties and ensure any processing preserves the desired properties, are still emerging. In many cases, whilst offline statistical tests exist such as assessment of nonlinearity or stochasticity, online tests which not only characterise but also track changes in the nature of the signal are lacking. To that end, by employing recent developments in signal characterisation, criteria are derived for the assessment of the changes in the nature of the processed signal. Through the fusion of the outputs of adaptive filters a single collaborative hybrid filter is produced. By tracking the dynamics of the mixing parameter of this filter, rather than the actual filter performance, a clear indication as to the current nature of the signal is given. Implementations of the proposed method show that it is possible to quantify the degree of nonlinearity within both real- and complex-valued data. This is then extended (in the real domain) from dealing with nonlinearity in general, to a more specific example, namely sparsity. Extensions of adaptive filters from the real to the complex domain are non-trivial and the differences between the statistics in the real and complex domains need to be taken into account. In terms of signal characteristics, nonlinearity can be both split- and fully-complex and complex-valued data can be considered circular or noncircular. Furthermore, by combining the information obtained from hybrid filters of different natures it is possible to use this method to gain a more complete understanding of the nature of the nonlinearity within a signal. This also paves the way for building multidimensional feature spaces and their application in data/information fusion. To produce online tests for sparsity, adaptive filters for sparse environments are investigated and a unifying framework for the derivation of proportionate normalised least mean square (PNLMS) algorithms is presented. This is then extended to derive variants with an adaptive step-size. In order to create an online test for noncircularity, a study of widely linear autoregressive modelling is presented, from which a proof of the convergence of the test for noncircularity can be given. Applications of this method are illustrated on examples such as biomedical signals, speech and wind data

    Adaptive signal processing algorithms for noncircular complex data

    No full text
    The complex domain provides a natural processing framework for a large class of signals encountered in communications, radar, biomedical engineering and renewable energy. Statistical signal processing in C has traditionally been viewed as a straightforward extension of the corresponding algorithms in the real domain R, however, recent developments in augmented complex statistics show that, in general, this leads to under-modelling. This direct treatment of complex-valued signals has led to advances in so called widely linear modelling and the introduction of a generalised framework for the differentiability of both analytic and non-analytic complex and quaternion functions. In this thesis, supervised and blind complex adaptive algorithms capable of processing the generality of complex and quaternion signals (both circular and noncircular) in both noise-free and noisy environments are developed; their usefulness in real-world applications is demonstrated through case studies. The focus of this thesis is on the use of augmented statistics and widely linear modelling. The standard complex least mean square (CLMS) algorithm is extended to perform optimally for the generality of complex-valued signals, and is shown to outperform the CLMS algorithm. Next, extraction of latent complex-valued signals from large mixtures is addressed. This is achieved by developing several classes of complex blind source extraction algorithms based on fundamental signal properties such as smoothness, predictability and degree of Gaussianity, with the analysis of the existence and uniqueness of the solutions also provided. These algorithms are shown to facilitate real-time applications, such as those in brain computer interfacing (BCI). Due to their modified cost functions and the widely linear mixing model, this class of algorithms perform well in both noise-free and noisy environments. Next, based on a widely linear quaternion model, the FastICA algorithm is extended to the quaternion domain to provide separation of the generality of quaternion signals. The enhanced performances of the widely linear algorithms are illustrated in renewable energy and biomedical applications, in particular, for the prediction of wind profiles and extraction of artifacts from EEG recordings

    Complex-valued Adaptive Digital Signal Enhancement For Applications In Wireless Communication Systems

    Get PDF
    In recent decades, the wireless communication industry has attracted a great deal of research efforts to satisfy rigorous performance requirements and preserve high spectral efficiency. Along with this trend, I/Q modulation is frequently applied in modern wireless communications to develop high performance and high data rate systems. This has necessitated the need for applying efficient complex-valued signal processing techniques to highly-integrated, multi-standard receiver devices. In this dissertation, novel techniques for complex-valued digital signal enhancement are presented and analyzed for various applications in wireless communications. The first technique is a unified block processing approach to generate the complex-valued conjugate gradient Least Mean Square (LMS) techniques with optimal adaptations. The proposed algorithms exploit the concept of the complex conjugate gradients to find the orthogonal directions for updating the adaptive filter coefficients at each iteration. Along each orthogonal direction, the presented algorithms employ the complex Taylor series expansion to calculate time-varying convergence factors tailored for the adaptive filter coefficients. The performance of the developed technique is tested in the applications of channel estimation, channel equalization, and adaptive array beamforming. Comparing with the state of the art methods, the proposed techniques demonstrate improved performance and exhibit desirable characteristics for practical use. The second complex-valued signal processing technique is a novel Optimal Block Adaptive algorithm based on Circularity, OBA-C. The proposed OBA-C method compensates for a complex imbalanced signal by restoring its circularity. In addition, by utilizing the complex iv Taylor series expansion, the OBA-C method optimally updates the adaptive filter coefficients at each iteration. This algorithm can be applied to mitigate the frequency-dependent I/Q mismatch effects in analog front-end. Simulation results indicate that comparing with the existing methods, OBA-C exhibits superior convergence speed while maintaining excellent accuracy. The third technique is regarding interference rejection in communication systems. The research on both LMS and Independent Component Analysis (ICA) based techniques continues to receive significant attention in the area of interference cancellation. The performance of the LMS and ICA based approaches is studied for signals with different probabilistic distributions. Our research indicates that the ICA-based approach works better for super-Gaussian signals, while the LMS-based method is preferable for sub-Gaussian signals. Therefore, an appropriate choice of interference suppression algorithms can be made to satisfy the ever-increasing demand for better performance in modern receiver design

    Advanced signal processing techniques for the modeling and linearization of wireless communication systems.

    Get PDF
    Los nuevos estándares de comunicaciones digitales inalámbricas están impulsando el diseño de amplificadores de potencia con unas condiciones límites en términos de linealidad y eficiencia. Si bien estos nuevos sistemas exigen que los dispositivos activos trabajen cerca de la zona de saturación en busca de la eficiencia energética, la no linealidad inherente puede producir que el sistema muestre prestaciones inadecuadas en emisiones fuera de banda y distorsión en banda. La necesidad de técnicas digitales de compensación y la evolución en el diseño de nuevas arquitecturas de procesamiento de señales digitales posicionan a la predistorsión digital (DPD) como un enfoque práctico. Los predistorsionadores digitales se suelen basar en modelos de comportamiento como el memory polynomial (MP), el generalized memory polynomial (GMP) y el dynamic deviation reduction-based (DDR), etc. Los modelos de Volterra sufren la llamada "maldición de la dimensionalidad", ya que su complejidad tiende a crecer de forma exponencial a medida que el orden y la profundidad de memoria crecen. Esta tesis se centra principalmente en contribuir a la rama de conocimiento que enmarca el modelado y linealización de sistemas de comunicación inalámbrica. Los principales temas tratados son el modelo Volterra-Parafac y el modelo general de Volterra para sistemas complejos, los cuales tratan la estructura del DPD y las series de Volterra estructuradas con compressed-sensing y un método para la linealización en un rango de potencias de operación, que se centran en cómo los coeficientes de los modelos deben ser obtenidos.Premio Extraordinario de Doctorado U

    Hybrid solutions to instantaneous MIMO blind separation and decoding: narrowband, QAM and square cases

    Get PDF
    Future wireless communication systems are desired to support high data rates and high quality transmission when considering the growing multimedia applications. Increasing the channel throughput leads to the multiple input and multiple output and blind equalization techniques in recent years. Thereby blind MIMO equalization has attracted a great interest.Both system performance and computational complexities play important roles in real time communications. Reducing the computational load and providing accurate performances are the main challenges in present systems. In this thesis, a hybrid method which can provide an affordable complexity with good performance for Blind Equalization in large constellation MIMO systems is proposed first. Saving computational cost happens both in the signal sep- aration part and in signal detection part. First, based on Quadrature amplitude modulation signal characteristics, an efficient and simple nonlinear function for the Independent Compo- nent Analysis is introduced. Second, using the idea of the sphere decoding, we choose the soft information of channels in a sphere, and overcome the so- called curse of dimensionality of the Expectation Maximization (EM) algorithm and enhance the final results simultaneously. Mathematically, we demonstrate in the digital communication cases, the EM algorithm shows Newton -like convergence.Despite the widespread use of forward -error coding (FEC), most multiple input multiple output (MIMO) blind channel estimation techniques ignore its presence, and instead make the sim- plifying assumption that the transmitted symbols are uncoded. However, FEC induces code structure in the transmitted sequence that can be exploited to improve blind MIMO channel estimates. In final part of this work, we exploit the iterative channel estimation and decoding performance for blind MIMO equalization. Experiments show the improvements achievable by exploiting the existence of coding structures and that it can access the performance of a BCJR equalizer with perfect channel information in a reasonable SNR range. All results are confirmed experimentally for the example of blind equalization in block fading MIMO systems

    On data-selective learning

    Get PDF
    Adaptive filters are applied in several electronic and communication devices like smartphones, advanced headphones, DSP chips, smart antenna, and teleconference systems. Also, they have application in many areas such as system identification, channel equalization, noise reduction, echo cancellation, interference cancellation, signal prediction, and stock market. Therefore, reducing the energy consumption of the adaptive filtering algorithms has great importance, particularly in green technologies and in devices using battery. In this thesis, data-selective adaptive filters, in particular the set-membership (SM) adaptive filters, are the tools to reach the goal. There are well known SM adaptive filters in literature. This work introduces new algorithms based on the classical ones in order to improve their performances and reduce the number of required arithmetic operations at the same time. Therefore, firstly, we analyze the robustness of the classical SM adaptive filtering algorithms. Secondly, we extend the SM technique to trinion and quaternion systems. Thirdly, by combining SM filtering and partialupdating, we introduce a new improved set-membership affine projection algorithm with constrained step size to improve its stability behavior. Fourthly, we propose some new least-mean-square (LMS) based and recursive least-squares based adaptive filtering algorithms with low computational complexity for sparse systems. Finally, we derive some feature LMS algorithms to exploit the hidden sparsity in the parameters.Filtros adaptativos são aplicados em diversos aparelhos eletrônicos e de comunicação, como smartphones, fone de ouvido avançados, DSP chips, antenas inteligentes e sistemas de teleconferência. Eles também têm aplicação em várias áreas como identificação de sistemas, equalização de canal, cancelamento de eco, cancelamento de interferência, previsão de sinal e mercado de ações. Desse modo, reduzir o consumo de energia de algoritmos adaptativos tem importância significativa, especialmente em tecnologias verdes e aparelhos que usam bateria. Nesta tese, filtros adaptativos com seleção de dados, em particular filtros adaptativos da família set-membership (SM), são apresentados para cumprir essa missão. No presente trabalho objetivamos apresentar novos algoritmos, baseados nos clássicos, a fim de aperfeiçoar seus desempenhos e, ao mesmo tempo, reduzir o número de operações aritméticas exigidas. Dessa forma, primeiro analisamos a robustez dos filtros adaptativos SM clássicos. Segundo, estendemos o SM aos números trinions e quaternions. Terceiro, foram utilizadas também duas famílias de algoritmos, SM filtering e partial-updating, de uma maneira elegante, visando reduzir energia ao máximo possível e obter um desempenho competitivo em termos de estabilidade. Quarto, a tese propõe novos filtros adaptativos baseado em algoritmos least-mean-square (LMS) e mínimos quadrados recursivos com complexidade computacional baixa para espaços esparsos. Finalmente, derivamos alguns algoritmos feature LMS para explorar a esparsidade escondida nos parâmetros

    Spatio-temporal prediction of wind fields

    Get PDF
    Short-term wind and wind power forecasts are required for the reliable and economic operation of power systems with significant wind power penetration. This thesis presents new statistical techniques for producing forecasts at multiple locations using spatiotemporal information. Forecast horizons of up to 6 hours are considered for which statistical methods outperform physical models in general. Several methods for producing hourly wind speed and direction forecasts from 1 to 6 hours ahead are presented in addition to a method for producing five-minute-ahead probabilistic wind power forecasts. The former have applications in areas such as energy trading and defining reserve requirements, and the latter in power system balancing and wind farm control. Spatio-temporal information is captured by vector autoregressive (VAR) models that incorporate wind direction by modelling the wind time series using complex numbers. In a further development, the VAR coefficients are replaced with coefficient functions in order to capture the dependence of the predictor on external variables, such as the time of year or wind direction. The complex-valued approach is found to produce accurate speed predictions, and the conditional predictors offer improved performance with little additional computational cost. Two non-linear algorithms have been developed for wind forecasting. In the first, the predictor is derived from an ensemble of particle swarm optimised candidate solutions. This approach is low cost and requires very little training data but fails to capitalise on spatial information. The second approach uses kernelised forms of popular linear algorithms which are shown to produce more accurate forecasts than their linear equivalents for multi-step-ahead prediction. Finally, very-short-term wind power forecasting is considered. Five-minute-ahead parametric probabilistic forecasts are produced by modelling the predictive distribution as logit-normal and forecasting its parameters using a sparse-VAR (sVAR) approach. Development of the sVAR is motivated by the desire to produce forecasts on a large spatial scale, i.e. hundreds of locations, which is critical during periods of high instantaneous wind penetration.Short-term wind and wind power forecasts are required for the reliable and economic operation of power systems with significant wind power penetration. This thesis presents new statistical techniques for producing forecasts at multiple locations using spatiotemporal information. Forecast horizons of up to 6 hours are considered for which statistical methods outperform physical models in general. Several methods for producing hourly wind speed and direction forecasts from 1 to 6 hours ahead are presented in addition to a method for producing five-minute-ahead probabilistic wind power forecasts. The former have applications in areas such as energy trading and defining reserve requirements, and the latter in power system balancing and wind farm control. Spatio-temporal information is captured by vector autoregressive (VAR) models that incorporate wind direction by modelling the wind time series using complex numbers. In a further development, the VAR coefficients are replaced with coefficient functions in order to capture the dependence of the predictor on external variables, such as the time of year or wind direction. The complex-valued approach is found to produce accurate speed predictions, and the conditional predictors offer improved performance with little additional computational cost. Two non-linear algorithms have been developed for wind forecasting. In the first, the predictor is derived from an ensemble of particle swarm optimised candidate solutions. This approach is low cost and requires very little training data but fails to capitalise on spatial information. The second approach uses kernelised forms of popular linear algorithms which are shown to produce more accurate forecasts than their linear equivalents for multi-step-ahead prediction. Finally, very-short-term wind power forecasting is considered. Five-minute-ahead parametric probabilistic forecasts are produced by modelling the predictive distribution as logit-normal and forecasting its parameters using a sparse-VAR (sVAR) approach. Development of the sVAR is motivated by the desire to produce forecasts on a large spatial scale, i.e. hundreds of locations, which is critical during periods of high instantaneous wind penetration

    Vocal fold vibratory and acoustic features in fatigued Karaoke singers

    Get PDF
    Session 3aMU - Musical Acoustics and Speech Communication: Singing Voice in Asian CulturesKaraoke is a popular singing entertainment particularly in Asia and is gaining more popularity in the rest of world. In Karaoke, an amateur singer sings with the background music and video (usually guided by the lyric captions on the video screen) played by Karaoke machine, using a microphone and an amplification system. As the Karaoke singers usually have no formal training, they may be more vulnerable to vocal fatigue as they may overuse and/or misuse their voices in the intensive and extensive singing activities. It is unclear whether vocal fatigue is accompanied by any vibration pattern or physiological changes of vocal folds. In this study, 20 participants aged from 18 to 23 years with normal voice were recruited to participate in an prolonged singing task, which induced vocal fatigue. High speed laryngscopic imaging and acoustic signals were recorded before and after the singing task. Images of /i/ phonation were quantitatively analyzed using the High Speed Video Processing (HSVP) program (Yiu, et al. 2010). It was found that the glottis became relatively narrower following fatigue, while the acoustic signals were not sensitive to measure change following fatigue. © 2012 Acoustical Society of Americapublished_or_final_versio

    Advanced Signal Processing Techniques for Two-Way Relaying Networks and Full-Duplex Communication Systems

    Get PDF
    Sehr hohe Datenraten und ständig verfügbare Netzabdeckung in zukünftigen drahtlosen Netzwerken erfordern neue Algorithmen auf der physischen Schicht. Die Nutzung von Relais stellt ein vielversprechendes Verfahren dar, da die Netzabdeckung gesteigert werden kann. Zusätzlich steht hierdurch im Vergleich zu Kupfer- oder Glasfaserleitungen eine preiswerte Lösung zur Anbindung an die Netzinfrastruktur zur Verfügung. Traditionelle Einwege-Relais-Techniken (One-Way Relaying [OWR]) nutzen Halbduplex-Verfahren (HD-Verfahren), welche das Übertragungssystem ausbremst und zu spektralen Verlusten führt. Einerseits erlauben es Zweiwege-Relais-Techniken (Two-Way Relaying [TWR]), simultan sowohl an das Relais zu senden als auch von diesem zu empfangen, wodurch im Vergleich zu OWR das Spektrum effizienter genutzt wird. Aus diesem Grunde untersuchen wir Zweiwege-Relais und im Speziellen TWR-Systeme für den Mehrpaar-/Mehrnutzer-Betrieb unter Nutzung von Amplify-and-forward-Relais (AF-Relais). Derartige Szenarien leiden unter Interferenzen zwischen Paaren bzw. zwischen Nutzern. Um diesen Interferenzen Herr zu werden, werden hochentwickelte Signalverarbeitungsalgorithmen – oder in anderen Worten räumliche Mehrfachzugriffsverfahren (Spatial Division Multiple Access [SDMA]) – benötigt. Andererseits kann der spektrale Verlust durch den HD-Betrieb auch kompensiert werden, wenn das Relais im Vollduplexbetrieb arbeitet. Nichtsdestotrotz ist ein FD-Gerät in der Praxis aufgrund starker interner Selbstinterferenz (SI) und begrenztem Dynamikumfang des Tranceivers schwer zu realisieren. Aus diesem Grunde sollten fortschrittliche Verfahren zur SI-Ünterdrückung entwickelt werden. Diese Dissertation trägt diesen beiden Zielen Rechnung, indem optimale und/oder effiziente algebraische Lösungen entwickelt werden, welche verschiedenen Nutzenfunktionen, wie Summenrate und minimale Sendeleistung, maximieren.Im ersten Teil studieren wir zunächst Mehrpaar-TWR-Netzwerke mit einem einzelnen Mehrantennen-AF-Relais. Dieser Anwendungsfall kann auch so betrachtet werden, dass sich mehrere verschiedene Dienstoperatoren Relais und Spektrum teilen, wobei verschiedene Nutzerpaare zu verschiedenen Dienstoperatoren gehören. Aktuelle Ansätzen zielen auf Interferenzunterdrückung ab. Wir schlagen ein auf Projektion basiertes Verfahren zur Trennung mehrerer Dienstoperatoren (projection based separation of multiple operators [ProBaSeMO]) vor. ProBaSeMO ist leicht anpassbar für den Fall, dass jeder Nutzer mehrere Antennen besitzt oder unterschiedliche Systemdesignkriterien angewendet werden müssen. Als Bewertungsmaßstab für ProBaSeMO entwickeln wir optimale Algorithmen zur Maximierung der Summenrate, zur Minimierung der Sendeleistung am Relais oder zur Maximierung des minimalen Signal-zu-Interferenz-und-Rausch-Verhältnisses (Signal to Interference and Noise Ratio [SINR]) am Nutzer. Zur Maximierung der Summenrate wurden spezifische gradientenbasierte Methoden entwickelt, die unabhängig davon sind, ob ein Nutzer mit einer oder mehr Antennen ausgestattet ist. Um im Falle eines „Worst-Case“ immer noch eine polynomielle Laufzeit zu garantieren, entwickelten wir einen Algorithmus mit polynomieller Laufzeit. Dieser ist inspiriert von der „Polynomial Time Difference of Convex Functions“-Methode (POTDC-Methode). Bezüglich der Summenrate des Systems untersuchen wir zuletzt, welche Bedingungen erfüllt sein müssen, um einen Gewinn durch gemeinsames Nutzen zu erhalten. Hiernach untersuchen wir die Maximierung der Summenrate eines Mehrpaar-TWR-Netzwerkes mit mehreren Einantennen-AF-Relais und Einantennen-Nutzern. Das daraus resultierende Problem der Summenraten-Maximierung, gebunden an eine bestimmte Gesamtsendeleistung aller Relais im Netzwerk, ist ähnlich dem des vorangegangenen Szenarios. Dementsprechend kann eine optimale Lösung für das eine Szenario auch für das jeweils andere Szenario genutzt werden. Weiterhin werden basierend auf dem Polynomialzeitalgorithmus global optimale Lösungen entwickelt. Diese Lösungen sind entweder an eine maximale Gesamtsendeleistung aller Relais oder an eine maximale Sendeleistung jedes einzelnen Relais gebunden. Zusätzlich entwickeln wir suboptimale Lösungen, die effizient in ihrer Laufzeit sind und eine Approximation der optimalen Lösung darstellen. Hiernach verlegen wir unser Augenmerk auf ein Mehrpaar-TWR-Netzwerk mit mehreren Mehrantennen-AF-Relais und mehreren Repeatern. Solch ein Szenario ist allgemeiner, da die vorherigen beiden Szenarien als spezielle Realisierungen dieses Szenarios aufgefasst werden können. Das Interferenz-Management in diesem Szenario ist herausfordernder aufgrund der vorhandenen Repeater. Interferenzneutralisierung (IN) stellt eine Lösung dar, um diese Art Interferenz zu handhaben. Im Zuge dessen werden notwendige und ausreichende Bedingungen zur Aufhebung der Interferenz hergeleitet. Weiterhin wird ein Framework entwickelt, dass verschiedene Systemnutzenfunktionen optimiert, wobei IN im jeweiligen Netzwerk vorhanden sein kann oder auch nicht. Dies ist unabhängig davon, ob die Relais einer maximalen Gesamtsendeleistung oder einer individuellen maximalen Sendeleistung unterliegen. Letztendlich entwickeln wir ein Übertragungsverfahren sowie ein Vorkodier- und Dekodierverfahren für Basisstationen (BS) in einem TWR-assistierten Mehrbenutzer-MIMO-Downlink-Kanal. Im Vergleich mit dem Mehrpaar-TWR-Netzwerk leidet dieses Szenario unter Interferenzen zwischen den Kanälen. Wir entwickeln drei suboptimale Algorithmen, welche auf Kanalinversion basieren. ProBaSeMO und „Zero-Forcing Dirty Paper Coding“ (ZFDPC), welche eine geringe Zeitkomplexität aufweisen, schaffen eine Balance zwischen Leistungsfähigkeit und Komplexität. Zusätzlich gibt es jeweils nur geringe Einbrüche in stark beanspruchten Kommunikationssystemen.Im zweiten Teil untersuchen wir Techniken zur SI-Unterdrückung, um den FD-Gewinn in einem Punkt-zu-Punkt-System auszunutzen. Zunächst entwickeln wir ein Übertragungsverfahren, dass auf SI Rücksicht nimmt und die SI-Unterdrückung gegen den Multiplexgewinn abwägt. Die besten Ergebnisse werden durch die perfekte Kenntnis des Kanals erzielt, was praktisch nicht genau der Fall ist. Aus diesem Grund werden Übertragungstechniken für den „Worst Case“ entwickelt, die den Kanalschätzfehlern Rechnung tragen. Diese Fehler werden deterministisch modelliert und durch Ellipsoide beschränkt. In praktischen Szenarien ist der HF-Schaltkreise nicht perfekt. Dies hat Einfluss auf die Verfahren zur SI-Unterdrückung und führt zu einer Restselbstinterferenz. Wir entwickeln effiziente Übertragungstechniken mittels Beamforming, welche auf dem Signal-zu-Verlust-und-Rausch-Verhältnis (signal to leakage plus noise ratio [SLNR]) aufbauen, um Unvollkommenheiten der HF-Schaltkreise auszugleichen. Zusätzlich können alle Designkonzepte auf FD-OWR-Systeme erweitert werden.To enable ultra-high data rate and ubiquitous coverage in future wireless networks, new physical layer techniques are desired. Relaying is a promising technique for future wireless networks since it can boost the coverage and can provide low cost wireless backhauling solutions, as compared to traditional wired backhauling solutions via fiber and copper. Traditional one-way relaying (OWR) techniques suffer from the spectral loss due to the half-duplex (HD) operation at the relay. On one hand, two-way relaying (TWR) allows the communication partners to transmit to and/or receive from the relay simultaneously and thus uses the spectrum more efficiently than OWR. Therefore, we study two-way relays and more specifically multi-pair/multi-user TWR systems with amplify-and-forward (AF) relays. These scenarios suffer from inter-pair or inter-user interference. To deal with the interference, advanced signal processing algorithms, in other words, spatial division multiple access (SDMA) techniques, are desired. On the other hand, if the relay is a full-duplex (FD) relay, the spectral loss due to a HD operation can also be compensated. However, in practice, a FD device is hard to realize due to the strong loop-back self-interference and the limited dynamic range at the transceiver. Thus, advanced self-interference suppression techniques should be developed. This thesis contributes to the two goals by developing optimal and/or efficient algebraic solutions for different scenarios subject to different utility functions of the system, e.g., sum rate maximization and transmit power minimization. In the first part of this thesis, we first study a multi-pair TWR network with a multi-antenna AF relay. This scenario can be also treated as the sharing of the relay and the spectrum among multiple operators assuming that different pairs of users belong to different operators. Existing approaches focus on interference suppression. We propose a projection based separation of multiple operators (ProBaSeMO) scheme, which can be easily extended when each user has multiple antennas or when different system design criteria are applied. To benchmark the ProBaSeMO scheme, we develop optimal relay transmit strategies to maximize the system sum rate, minimize the required transmit power at the relay, or maximize the minimum signal to interference plus noise ratio (SINR) of the users. Specifically for the sum rate maximization problem, gradient based methods are developed regardless whether each user has a single antenna or multiple antennas. To guarantee a worst-case polynomial time solution, we also develop a polynomial time algorithm which has been inspired by the polynomial time difference of convex functions (POTDC) method. Finally, we analyze the conditions for obtaining the sharing gain in terms of the sum rate. Then we study the sum rate maximization problem of a multi-pair TWR network with multiple single antenna AF relays and single antenna users. The resulting sum rate maximization problem, subject to a total transmit power constraint of the relays in the network, yields a similar problem structure as in the previous scenario. Therefore the optimal solution for one scenario can be used for the other. Moreover, a global optimal solution, which is based on the polyblock approach, and several suboptimal solutions, which are more computationally efficient and approximate the optimal solution, are developed when there is a total transmit power constraint of the relays in the network or each relay has its own transmit power constraint. We then shift our focus to a multi-pair TWR network with multiple multi-antenna AF relays and multiple dumb repeaters. This scenario is more general because the previous two scenarios can be seen as special realizations of this scenario. The interference management in this scenario is more challenging due to the existence of the repeaters. Interference neutralization (IN) is a solution for dealing with this kind of interference. Thereby, necessary and sufficient conditions for neutralizing the interference are derived. Moreover, a general framework to optimize different system utility functions in this network with or without IN is developed regardless whether the AF relays in the network have a total transmit power limit or individual transmit power limits. Finally, we develop the relay transmit strategy as well as base station (BS) precoding and decoding schemes for a TWR assisted multi-user MIMO (MU-MIMO) downlink channel. Compared to the multi-pair TWR network, this scenario suffers from the co-channel interference. We develop three suboptimal algorithms which are based on channel inversion, ProBaSeMO and zero-forcing dirty paper coding (ZFDPC), which has a low computational complexity, provides a balance between the performance and the complexity, and suffers only a little when the system is heavily loaded, respectively.In the second part of this thesis, we investigate self-interference (SI) suppression techniques to exploit the FD gain for a point-to-point MIMO system. We first develop SI aware transmit strategies, which provide a balance between the SI suppression and the multiplexing gain of the system. To get the best performance, perfect channel state information (CSI) is needed, which is imperfect in practice. Thus, worst case transmit strategies to combat the imperfect CSI are developed, where the CSI errors are modeled deterministically and bounded by ellipsoids. In real word applications, the RF chain is imperfect. This affects the performance of the SI suppression techniques and thus results in residual SI. We develop efficient transmit beamforming techniques, which are based on the signal to leakage plus noise ratio (SLNR) criterion, to deal with the imperfections in the RF chain. All the proposed design concepts can be extended to FD OWR systems
    corecore