183 research outputs found

    On the ADI method for the Sylvester Equation and the optimal-H2\mathcal{H}_2 points

    Full text link
    The ADI iteration is closely related to the rational Krylov projection methods for constructing low rank approximations to the solution of Sylvester equation. In this paper we show that the ADI and rational Krylov approximations are in fact equivalent when a special choice of shifts are employed in both methods. We will call these shifts pseudo H2-optimal shifts. These shifts are also optimal in the sense that for the Lyapunov equation, they yield a residual which is orthogonal to the rational Krylov projection subspace. Via several examples, we show that the pseudo H2-optimal shifts consistently yield nearly optimal low rank approximations to the solutions of the Lyapunov equations

    A numerical comparison of solvers for large-scale, continuous-time algebraic Riccati equations and LQR problems

    Full text link
    In this paper, we discuss numerical methods for solving large-scale continuous-time algebraic Riccati equations. These methods have been the focus of intensive research in recent years, and significant progress has been made in both the theoretical understanding and efficient implementation of various competing algorithms. There are several goals of this manuscript: first, to gather in one place an overview of different approaches for solving large-scale Riccati equations, and to point to the recent advances in each of them. Second, to analyze and compare the main computational ingredients of these algorithms, to detect their strong points and their potential bottlenecks. And finally, to compare the effective implementations of all methods on a set of relevant benchmark examples, giving an indication of their relative performance

    From low-rank approximation to an efficient rational Krylov subspace method for the Lyapunov equation

    Full text link
    We propose a new method for the approximate solution of the Lyapunov equation with rank-11 right-hand side, which is based on extended rational Krylov subspace approximation with adaptively computed shifts. The shift selection is obtained from the connection between the Lyapunov equation, solution of systems of linear ODEs and alternating least squares method for low-rank approximation. The numerical experiments confirm the effectiveness of our approach.Comment: 17 pages, 1 figure

    Low-rank updates and a divide-and-conquer method for linear matrix equations

    Get PDF
    Linear matrix equations, such as the Sylvester and Lyapunov equations, play an important role in various applications, including the stability analysis and dimensionality reduction of linear dynamical control systems and the solution of partial differential equations. In this work, we present and analyze a new algorithm, based on tensorized Krylov subspaces, for quickly updating the solution of such a matrix equation when its coefficients undergo low-rank changes. We demonstrate how our algorithm can be utilized to accelerate the Newton method for solving continuous-time algebraic Riccati equations. Our algorithm also forms the basis of a new divide-and-conquer approach for linear matrix equations with coefficients that feature hierarchical low-rank structure, such as HODLR, HSS, and banded matrices. Numerical experiments demonstrate the advantages of divide-and-conquer over existing approaches, in terms of computational time and memory consumption

    Effizientes Lösen von großskaligen Riccati-Gleichungen und ein ODE-Framework für lineare Matrixgleichungen

    Get PDF
    This work considers the iterative solution of large-scale matrix equations. Due to the size of the system matrices in large-scale Riccati equations the solution can not be calculated directly but is approximated by a low rank matrix ZYZ^*. Herein Z is a basis of a low-dimensional rational Krylov subspace. The inner matrix Y is a small square matrix. Two ways to choose this inner matrix are examined: By imposing a rank condition on the Riccati residual and by projecting the Riccati residual onto the Krylov subspace generated by Z. The rank condition is motivated by the well-known ADI iteration. The ADI solutions span a rational Krylov subspace and yield a rank-p residual. It is proven that the rank-p condition guarantees existence and uniqueness of such an approximate solution. Known projection methods are generalized to oblique projections and a new formulation of the Riccati residual is derived, which allows for an efficient evaluation of the residual norm. Further a truncated approximate solution is characterized as the solution of a Riccati equation, which is projected to a subspace of the Krylov subspace generated by Z. For the approximate solution of Lyapunov equations a system of ordinary differential equations (ODEs) is solved via Runge-Kutta methods. It is shown that the space spanned by the approximate solution is a rational Krylov subspace with poles determined by the time step sizes and the eigenvalues of the matrices of the Butcher tableau of the used Runge-Kutta method. The method is applied to a model order reduction problem. The analytical solution of the system of ODEs satisfies an algebraic invariant. Those Runge-Kutta methods which preserve this algebraic invariant are characterized by a simple condition on the corresponding Butcher tableau. It is proven that these methods are equivalent to the ADI iteration. The invariance approach is transferred to Sylvester equations.Diese Arbeit befasst sich mit der numerischen Lösung hochdimensionaler Matrixgleichungen mittels iterativer Verfahren. Aufgrund der Größe der Systemmatrizen in großskaligen algebraischen Riccati-Gleichung kann die Lösung nicht direkt bestimmt werden, sondern wird durch eine approximative Lösung ZYZ^* von geringem Rang angenähert. Hierbei wird Z als Basis eines rationalen Krylovraums gewählt und enthält nur wenige Spalten. Die innere Matrix Y ist klein und quadratisch. Es werden zwei Wege untersucht, die Matrix Y zu wählen: Durch eine Rang-Bedingung an das Riccati-Residuum und durch Projektion des Riccati-Residuums auf den von Z erzeugten Krylovraum. Die Rang-Bedingung wird durch die wohlbekannten ADI-Verfahren motiviert. Die approximativen ADI-Lösungen spannen einen Krylovraum auf und führen zu einem Riccati-Residuum vom Rang p. Es wird bewiesen, dass die Rang-p-Bedingung Existenz und Eindeutigkeit einer solchen approximativen Lösung impliziert. Aus diesem Ergebnis werden effiziente iterative Verfahren abgeleitet, die eine solche approximative Lösung erzeugen. Bisher bekannte Projektionsverfahren werden auf schiefe Projektionen erweitert und es wird eine neue Formulierung des Riccati-Residuums hergeleitet, die eine effiziente Berechnung der Norm erlaubt. Weiter wird eine abgeschnittene approximative Lösung als Lösung einer Riccati-Gleichung charakterisiert, die auf einen Unterraum des von Z erzeugten Krylovraums projiziert wird. Um die Lösung der Lyapunov-Gleichung zu approximieren wird ein System gewöhnlicher Differentialgleichungen mittels Runge-Kutta-Verfahren numerisch gelöst. Es wird gezeigt, dass der von der approximativen Lösung aufgespannte Raum ein rationaler Krylovraum ist, dessen Pole von den Zeitschrittweiten der Integration und den Eigenwerten der Koeffizientenmatrix aus dem Butcher-Tableau des verwendeten Runge-Kutta-Verfahrens abhängen. Das Verfahren wird auf ein Problem der Modellreduktion angewendet. Die analytische Lösung des Differentialgleichungssystems erfüllt eine algebraische Invariante. Diejenigen Runge-Kutta-Verfahren, die diese Invariante erhalten, werden durch eine Bedingung an die zugehörigen Butcher-Tableaus charakterisiert. Es wird gezeigt, dass diese speziellen Verfahren äquivalent zur ADI-Iteration sind. Der Invarianten-Ansatz wird auf Sylvester-Gleichungen übertragen
    • …
    corecore