166 research outputs found

    Cloud Detection And Trace Gas Retrieval From The Next Generation Satellite Remote Sensing Instruments

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2005The objective of this thesis is to develop a cloud detection algorithm suitable for the National Polar Orbiting Environmental Satellite System (NPOESS) Visible Infrared Imaging Radiometer Suite (VIIRS) and methods for atmospheric trace gas retrieval for future satellite remote sensing instruments. The development of this VIIRS cloud mask required a flowdown process of different sensor models in which a variety of sensor effects were simulated and evaluated. This included cloud simulations and cloud test development to investigate possible sensor effects, and a comprehensive flowdown analysis of the algorithm was conducted. In addition, a technique for total column water vapor retrieval using shadows was developed with the goal of enhancing water vapor retrievals under hazy atmospheric conditions. This is a new technique that relies on radiance differences between clear and shadowed surfaces, combined with ratios between water vapor absorbing and window regions. A novel method for retrieving methane amounts over water bodies, including lakes, rivers, and oceans, under conditions of sun glint has also been developed. The theoretical basis for the water vapor as well as the methane retrieval techniques is derived and simulated using a radiative transfer model

    Evaluation of the Harmful Algal Bloom Mapping System (HABMapS) and Bulletin

    Get PDF
    The National Oceanic and Atmospheric Administration (NOAA) Harmful Algal Bloom (HAB) Mapping System and Bulletin provide a Web-based geographic information system (GIS) and an e-mail alert system that allow the detection, monitoring, and tracking of HABs in the Gulf of Mexico. NASA Earth Science data that potentially support HABMapS/Bulletin requirements include ocean color, sea surface temperature (SST), salinity, wind fields, precipitation, water surface elevation, and ocean currents. Modeling contributions include ocean circulation, wave/currents, along-shore current regimes, and chlorophyll modeling (coupled to imagery). The most immediately useful NASA contributions appear to be the 1-km Moderate Resolution Imaging Spectrometer (MODIS) chlorophyll and SST products and the (presently used) SeaWinds wind vector data. MODIS pigment concentration and SST data are sufficiently mature to replace imagery currently used in NOAA HAB applications. The large file size of MODIS data is an impediment to NOAA use and modified processing schemes would aid in NOAA adoption of these products for operational HAB forecasting

    Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

    Get PDF
    The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASA's Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the onorbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed

    The NPOESS Preparatory Project Science Data Segment: Brief Overview

    Get PDF
    The NPOESS Preparatory Project (NPP) provides remotely-sensed land, ocean, atmospheric, ozone, and sounder data that will serve the meteorological and global climate change scientific communities while also providing risk reduction for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), the U.S. Government s future low-Earth orbiting satellite system monitoring global weather and environmental conditions. NPOESS and NPP are a new era, not only because the sensors will provide unprecedented quality and volume of data but also because it is a joint mission of three federal agencies, NASA, NOAA, and DoD. NASA's primary science role in NPP is to independently assess the quality of the NPP science and environmental data records. Such assessment is critical for making NPOESS products the best that they can be for operational use and ultimately for climate studies. The Science Data Segment (SDS) supports science assessment by assuring the timely provision of NPP data to NASA s science teams organized by climate measurement themes. The SDS breaks down into nine major elements, an input element that receives data from the operational agencies and acts as a buffer, a calibration analysis element, five elements devoted to measurement based quality assessment, an element used to test algorithmic improvements, and an element that provides overall science direction. This paper will describe how the NPP SDS will leverage on NASA experience to provide a mission-reliable research capability for science assessment of NPP derived measurements

    Solutions Network Formulation Report. Visible/Infrared Imager/Radiometer Suite and Landsat Data Continuity Mission Simulated Data Products for the Great Lakes Basin Ecological Team

    Get PDF
    The proposed solution would simulate VIIRS and LDCM sensor data for use in the USGS/USFWS GLBET DST. The VIIRS sensor possesses a spectral range that provides water-penetrating bands that could be used to assess water clarity on a regional spatial scale. The LDCM sensor possesses suitable spectral bands in a range of wavelengths that could be used to map water quality at finer spatial scales relative to VIIRS. Water quality, alongshore sediment transport and pollutant discharge tracking into the Great Lakes system are targeted as the primary products to be developed. A principal benefit of water quality monitoring via satellite imagery is its economy compared to field-data collection methods. Additionally, higher resolution satellite imagery provides a baseline dataset(s) against which later imagery can be overlaid in GIS-based DST programs. Further, information derived from higher resolution satellite imagery can be used to address public concerns and to confirm environmental compliance. The candidate solution supports the Public Health, Coastal Management, and Water Management National Applications

    Land and cryosphere products from Suomi NPP VIIRS: overview and status

    Get PDF
    [1] The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument was launched in October 2011 as part of the Suomi National Polar-Orbiting Partnership (S-NPP). The VIIRS instrument was designed to improve upon the capabilities of the operational Advanced Very High Resolution Radiometer and provide observation continuity with NASA's Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS). Since the VIIRS first-light images were received in November 2011, NASA- and NOAA-funded scientists have been working to evaluate the instrument performance and generate land and cryosphere products to meet the needs of the NOAA operational users and the NASA science community. NOAA's focus has been on refining a suite of operational products known as Environmental Data Records (EDRs), which were developed according to project specifications under the National Polar-Orbiting Environmental Satellite System. The NASA S-NPP Science Team has focused on evaluating the EDRs for science use, developing and testing additional products to meet science data needs, and providing MODIS data product continuity. This paper presents to-date findings of the NASA Science Team's evaluation of the VIIRS land and cryosphere EDRs, specifically Surface Reflectance, Land Surface Temperature, Surface Albedo, Vegetation Indices, Surface Type, Active Fires, Snow Cover, Ice Surface Temperature, and Sea Ice Characterization. The study concludes that, for MODIS data product continuity and earth system science, an enhanced suite of land and cryosphere products and associated data system capabilities are needed beyond the EDRs currently available from the VIIRS

    Solutions Network Formulation Report. Visible/Infrared Imager/Radiometer Suite and Advanced Microwave Scanning Radiometer Data Products for National Drought Monitor Decision Support

    Get PDF
    Drought effects are either direct or indirect depending on location, population, and regional economic vitality. Common direct effects of drought are reduced crop, rangeland, and forest productivity; increased fire hazard; reduced water levels; increased livestock and wildlife mortality rates; and damage to wildlife and fish habitat. Indirect impacts follow on the heels of direct impacts. For example, a reduction in crop, rangeland, and forest productivity may result in reduced income for farmers and agribusiness, increased prices for food and timber, unemployment, reduced tax revenues, increased crime, foreclosures on bank loans to farmers and businesses, migration, and disaster relief programs. In the United States alone, drought is estimated to result in annual losses of between $6 - 8 billion. Recent sustained drought in the United States has made decision-makers aware of the impacts of climate change on society and environment. The eight major droughts that occurred in the United States between 1980 and 1999 accounted for the largest percentage of weather-related monetary losses. Monitoring drought and its impact that occurs at a variety of scales is an important government activity -- not only nationally but internationally as well. The NDMC (National Drought Mitigation Center) and the USDA (U.S. Department of Agriculture) RMA (Risk Management Agency) have partnered together to develop a DM-DSS (Drought Monitoring Decision Support System). This monitoring system will be an interactive portal that will provide users the ability to visualize and assess drought at all levels. This candidate solution incorporates atmospherically corrected VIIRS data products, such as NDVI (Normalized Difference Vegetation Index) and Ocean SST (sea surface temperature), and AMSR-E soil moisture data products into two NDMC vegetation indices -- VegDRI (Vegetation Drought Response Index) and VegOUT (Vegetation Outlook) -- which are then input into the DM-DSS

    Evaluation of the Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Base Height (CBH) Pixel-level Retrieval Algorithm for Single-layer Water Clouds

    Get PDF
    Evaluation of the Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Base Height (CBH) product was accomplished. CBH is an important factor for aviation, but a lack of coverage for ground-based retrieval is a significant limitation. Space-based retrieval is essential; therefore, the VIIRS CBH pixel-level retrieval algorithm was assessed for single-layer water clouds. Accurate (truth) measurements were needed not only for the CBH product, but also for VIIRS cloud optical thickness (COT), effective particle size (EPS), and cloud top height (CTH). Data from Atmospheric Radiation Measurement (ARM) sites were used, with VIIRS-ARM matchups created from June 2013 through October 2015 for four locations. After initial CBH results were large and highly variable, the VIIRS CTH product was replaced with the ARM (truth) CTH product. This substantially reduced variability and errors in the VIIRS CBH products, demonstrating that the CBH algorithm is fundamentally sound. Thus, future research is needed to reduce errors in the VIIRS CTH products in order to ensure the CBH products are suitable for aviation support

    Model Calculations of Solar Spectral Irradiance in the 3.7 Micron Band for Earth Remote Sensing Applications

    Get PDF
    Since the launch of the first Advanced Very High Resolution Radiometer (AVHRR) instrument aboard TIROS-N, measurements in the 3.7 micron atmospheric window have been exploited for use in cloud detection and screening, cloud thermodynamic phase and surface snow/ice discrimination, and quantitative cloud particle size retrievals. The utility of the band has led to the incorporation of similar channels on a number of existing satellite imagers and future operational imagers. Daytime observations in the band include both reflected solar and thermal emission energy. Since 3.7 micron channels are calibrated to a radiance scale (via onboard blackbodies), knowledge of the top-of-atmosphere solar irradiance in the spectral region is required to infer reflectance. Despite the ubiquity of 3.7 micron channels, absolute solar spectral irradiance data comes from either a single measurement campaign (Thekaekara et al. 1969) or synthetic spectra. In this study, we compare historical 3.7 micron band spectral irradiance data sets with the recent semi-empirical solar model of the quiet-Sun by Fontenla et al. (2006). The model has expected uncertainties of about 2 % in the 3.7 pm spectral region. We find that channel-averaged spectral irradiances using the observations reported by Thekaekara et al. are 3.2-4.1% greater than those derived from the Fontenla et al. model for MODIS and AVHRR instrument bandpasses; the Kurucz spectrum (1995) as included in the MODTRAN4 distribution, gives channel-averaged irradiances 1.2-1.5 % smaller than the Fontenla model. For the MODIS instrument, these solar irradiance uncertainties result in cloud microphysical retrievals uncertainties comparable with other fundamental reflectance error sources

    Potential of VIIRS Time Series Data for Aiding the USDA Forest Service Early Warning System for Forest Health Threats: A Gypsy Moth Defoliation Case Study

    Get PDF
    This report details one of three experiments performed during FY 2007 for the NASA RPC (Rapid Prototyping Capability) at Stennis Space Center. This RPC experiment assesses the potential of VIIRS (Visible/Infrared Imager/Radiometer Suite) and MODIS (Moderate Resolution Imaging Spectroradiometer) data for detecting and monitoring forest defoliation from the non-native Eurasian gypsy moth (Lymantria dispar). The intent of the RPC experiment was to assess the degree to which VIIRS data can provide forest disturbance monitoring information as an input to a forest threat EWS (Early Warning System) as compared to the level of information that can be obtained from MODIS data. The USDA Forest Service (USFS) plans to use MODIS products for generating broad-scaled, regional monitoring products as input to an EWS for forest health threat assessment. NASA SSC is helping the USFS to evaluate and integrate currently available satellite remote sensing technologies and data products for the EWS, including the use of MODIS products for regional monitoring of forest disturbance. Gypsy moth defoliation of the mid-Appalachian highland region was selected as a case study. Gypsy moth is one of eight major forest insect threats listed in the Healthy Forest Restoration Act (HFRA) of 2003; the gypsy moth threatens eastern U.S. hardwood forests, which are also a concern highlighted in the HFRA of 2003. This region was selected for the project because extensive gypsy moth defoliation occurred there over multiple years during the MODIS operational period. This RPC experiment is relevant to several nationally important mapping applications, including agricultural efficiency, coastal management, ecological forecasting, disaster management, and carbon management. In this experiment, MODIS data and VIIRS data simulated from MODIS were assessed for their ability to contribute broad, regional geospatial information on gypsy moth defoliation. Landsat and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) data were used to assess the quality of gypsy moth defoliation mapping products derived from MODIS data and from simulated VIIRS data. The project focused on use of data from MODIS Terra as opposed to MODIS Aqua mainly because only MODIS Terra data was collected during 2000 and 2001-years with comparatively high amounts of gypsy moth defoliation within the study area. The project assessed the quality of VIIRS data simulation products. Hyperion data was employed to assess the quality of MODIS-based VIIRS simulation datasets using image correlation analysis techniques. The ART (Application Research Toolbox) software was used for data simulation. Correlation analysis between MODIS-simulated VIIRS data and Hyperion-simulated VIIRS data for red, NIR (near-infrared), and NDVI (Normalized Difference Vegetation Index) image data products collectively indicate that useful, effective VIIRS simulations can be produced using Hyperion and MODIS data sources. The r(exp 2) for red, NIR, and NDVI products were 0.56, 0.63, and 0.62, respectively, indicating a moderately high correlation between the 2 data sources. Temporal decorrelation from different data acquisition times and image misregistration may have lowered correlation results. The RPC experiment also generated MODIS-based time series data products using the TSPT (Time Series Product Tool) software. Time series of simulated VIIRS NDVI products were produced at approximately 400-meter resolution GSD (Ground Sampling Distance) at nadir for comparison to MODIS NDVI products at either 250- or 500-meter GSD. The project also computed MODIS (MOD02) NDMI (Normalized Difference Moisture Index) products at 500-meter GSD for comparison to NDVI-based products. For each year during 2000-2006, MODIS and VIIRS (simulated from MOD02) time series were computed during the peak gypsy moth defoliation time frame in the study area (approximately June 10 through July 27). Gypsy moth defoliation mapping products from simated VIIRS and MOD02 time series were produced using multiple methods, including image classification and change detection via image differencing. The latter enabled an automated defoliation detection product computed using percent change in maximum NDVI for a peak defoliation period during 2001 compared to maximum NDVI across the entire 2000-2006 time frame. Final gypsy moth defoliation mapping products were assessed for accuracy using randomly sampled locations found on available geospatial reference data (Landsat and ASTER data in conjunction with defoliation map data from the USFS). Extensive gypsy moth defoliation patches were evident on screen displays of multitemporal color composites derived from MODIS data and from simulated VIIRS vegetation index data. Such defoliation was particularly evident for 2001, although widespread denuded forests were also seen for 2000 and 2003. These visualizations were validated using aforementioned reference data. Defoliation patches were visible on displays of MODIS-based NDVI and NDMI data. The viewing of apparent defoliation patches on all of these products necessitated adoption of a specialized temporal data processing method (e.g., maximum NDVI during the peak defoliation time frame). The frequency of cloud cover necessitated this approach. Multitemporal simulated VIIRS and MODIS Terra data both produced effective general classifications of defoliated forest versus other land cover. For 2001, the MOD02-simulated VIIRS 400-meter NDVI classification produced a similar yet slightly lower overall accuracy (87.28 percent with 0.72 Kappa) than the MOD02 250-meter NDVI classification (88.44 percent with 0.75 Kappa). The MOD13 250-meter NDVI classification had a lower overall accuracy (79.13 percent) and a much lower Kappa (0.46). The report discusses accuracy assessment results in much more detail, comparing overall classification and individual class accuracy statistics for simulated VIIRS 400-meter NDVI, MOD02 250-meter NDVI, MOD02-500 meter NDVI, MOD13 250-meter NDVI, and MOD02 500-meter NDMI classifications. Automated defoliation detection products from simulated VIIRS and MOD02 data for 2001 also yielded similar, relatively high overall classification accuracy (85.55 percent for the VIIRS 400-meter NDVI versus 87.28 percent for the MOD02 250-meter NDVI). In contrast, the USFS aerial sketch map of gypsy moth defoliation showed a lower overall classification accuracy at 73.64 percent. The overall classification Kappa values were also similar for the VIIRS (approximately 0.67 Kappa) versus the MOD02 (approximately 0.72 Kappa) automated defoliation detection product, which were much higher than the values exhibited by the USFS sketch map product (overall Kappa of approximately 0.47). The report provides additional details on the accuracy of automated gypsy moth defoliation detection products compared with USFS sketch maps. The results suggest that VIIRS data can be effectively simulated from MODIS data and that VIIRS data will produce gypsy moth defoliation mapping products that are similar to MODIS-based products. The results of the RPC experiment indicate that VIIRS and MODIS data products have good potential for integration into the forest threat EWS. The accuracy assessment was performed only for 2001 because of time constraints and a relative scarcity of cloud-free Landsat and ASTER data for the peak defoliation period of the other years in the 2000-2006 time series. Additional work should be performed to assess the accuracy of gypsy moth defoliation detection products for additional years.The study area (mid-Appalachian highlands) and application (gypsy moth forest defoliation) are not necessarily representative of all forested regions and of all forest threat disturbance agents. Additional work should be performed on other inland and coastal regions as well as for other major forest threats
    • …
    corecore