49,565 research outputs found

    Analysis of the Error Propagation Phenomenon in Network Structures

    Get PDF
    The analysis of error propagation is of fundamental importance to assure safe operation and management of abnormal situations in any distributed information system. In this paper, the quantitative and qualitative methods are proposed to analyze possible error propagation scenarios based on different topologies, error types and probability distributions. The most interesting from our point of view is the course of error propagation in simple structures that are contained in more complex ones. These complex structures, which have attracted the attention of scientists for many decades, are traditionally analyzed with the use of formalisms from graph theory. Certain types of graphs are often used to model naturally occurring complex structures, such as social networks. Graph-theoretic approach proved successful when applied to social networks and other naturally occurring complex networks. The research was verified based on the experiments conducted on simulation model. The results provide some ideas of robustness -- the knowledge how to design the most error resistant architectures in complex environments

    Evaluating the more suitable ISM frequency band for iot-based smart grids: a quantitative study of 915 MHz vs. 2400 MHz

    Get PDF
    IoT has begun to be employed pervasively in industrial environments and critical infrastructures thanks to its positive impact on performance and efficiency. Among these environments, the Smart Grid (SG) excels as the perfect host for this technology, mainly due to its potential to become the motor of the rest of electrically-dependent infrastructures. To make this SG-oriented IoT cost-effective, most deployments employ unlicensed ISM bands, specifically the 2400 MHz one, due to its extended communication bandwidth in comparison with lower bands. This band has been extensively used for years by Wireless Sensor Networks (WSN) and Mobile Ad-hoc Networks (MANET), from which the IoT technologically inherits. However, this work questions and evaluates the suitability of such a "default" communication band in SG environments, compared with the 915 MHz ISM band. A comprehensive quantitative comparison of these bands has been accomplished in terms of: power consumption, average network delay, and packet reception rate. To allow such a study, a dual-band propagation model specifically designed for the SG has been derived, tested, and incorporated into the well-known TOSSIM simulator. Simulation results reveal that only in the absence of other 2400 MHz interfering devices (such as WiFi or Bluetooth) or in small networks, is the 2400 MHz band the best option. In any other case, SG-oriented IoT quantitatively perform better if operating in the 915 MHz band.This research was supported by the MINECO/FEDER project grants TEC2013-47016-C2-2-R (COINS) and TEC2016-76465-C2-1-R (AIM). The authors would like to thank Juan Salvador Perez Madrid nd Domingo Meca (part of the Iberdrola staff) for the support provided during the realization of this work. Ruben M. Sandoval also thanks the Spanish MICINN for an FPU (REF FPU14/03424) pre-doctoral fellowship
    • …
    corecore