2,116 research outputs found

    Auxiliary-Path-Assisted Digital Linearization of Wideband Wireless Receivers

    Get PDF
    Wireless communication systems in recent years have aimed at increasing data rates by ensuring flexible and efficient use of the radio spectrum. The dernier cri in this field has been in the area of carrier aggregation and cognitive radio. Carrier aggregation is a major component of LTE-Advanced. With carrier aggregation, a number of separate LTE carriers can be combined, by mobile network operators, to increase peak data rates and overall network capacity. Cognitive radios, on the other hand, allow efficient spectrum usage by locating and using spatially vacant spectral bands. High monolithic integration in these application fields can be achieved by employing receiver architectures such as the wideband direct conversion receiver topology. This is advantageous from the view point of cost, power consumption and size. However, many challenges exist, of particular importance is nonlinear distortion arising from analog front-end components such as low noise amplifiers (LNA). Nonlinear distortions especially become severe when several signals of varying amplitudes are received simultaneously. In such cases, nonlinear distortions stemming from strong signals may deteriorate the reception of the weaker signals, and also impair the receiver’s spectrum sensing capabilities. Nonlinearity, usually a consequence of dynamic range limitation, degrades performance in wideband multi-operator communications systems, and it will have a notable role in future wireless communication system design. This thesis presents a digital domain linearization technique that employs a very nonlinear auxiliary receiver path for nonlinear distortion cancellation. The proposed linearization technique relies on one-time adaptively-determined linearization coefficients for cancelling nonlinear distortions. Specifically, we take a look at canceling the troublesome in-band third order intermodulation products using the proposed technique. The proposed technique can be extended to cancel out both even and higher order odd intermodulation products. Dynamic behavioral models are used to account for RF nonlinearities, including memory effects which cannot be ignored in the wideband scenario. Since the proposed linearization technique involves the use of two receiver paths, techniques for correcting phase delays between the two paths are also introduced. Simplicity is the hallmark of the proposed linearization technique. It can achieve up to +30 dBm in IIP3 performance with ADC resolution being a major performance bottleneck. It also shows strong tolerance to strong blocker nonlinearities

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels

    Dirty RF Signal Processing for Mitigation of Receiver Front-end Non-linearity

    Get PDF
    Moderne drahtlose Kommunikationssysteme stellen hohe und teilweise gegensätzliche Anforderungen an die Hardware der Funkmodule, wie z.B. niedriger Energieverbrauch, große Bandbreite und hohe Linearität. Die Gewährleistung einer ausreichenden Linearität ist, neben anderen analogen Parametern, eine Herausforderung im praktischen Design der Funkmodule. Der Fokus der Dissertation liegt auf breitbandigen HF-Frontends für Software-konfigurierbare Funkmodule, die seit einigen Jahren kommerziell verfügbar sind. Die praktischen Herausforderungen und Grenzen solcher flexiblen Funkmodule offenbaren sich vor allem im realen Experiment. Eines der Hauptprobleme ist die Sicherstellung einer ausreichenden analogen Performanz über einen weiten Frequenzbereich. Aus einer Vielzahl an analogen Störeffekten behandelt die Arbeit die Analyse und Minderung von Nichtlinearitäten in Empfängern mit direkt-umsetzender Architektur. Im Vordergrund stehen dabei Signalverarbeitungsstrategien zur Minderung nichtlinear verursachter Interferenz - ein Algorithmus, der besser unter "Dirty RF"-Techniken bekannt ist. Ein digitales Verfahren nach der Vorwärtskopplung wird durch intensive Simulationen, Messungen und Implementierung in realer Hardware verifiziert. Um die Lücken zwischen Theorie und praktischer Anwendbarkeit zu schließen und das Verfahren in reale Funkmodule zu integrieren, werden verschiedene Untersuchungen durchgeführt. Hierzu wird ein erweitertes Verhaltensmodell entwickelt, das die Struktur direkt-umsetzender Empfänger am besten nachbildet und damit alle Verzerrungen im HF- und Basisband erfasst. Darüber hinaus wird die Leistungsfähigkeit des Algorithmus unter realen Funkkanal-Bedingungen untersucht. Zusätzlich folgt die Vorstellung einer ressourceneffizienten Echtzeit-Implementierung des Verfahrens auf einem FPGA. Abschließend diskutiert die Arbeit verschiedene Anwendungsfelder, darunter spektrales Sensing, robuster GSM-Empfang und GSM-basiertes Passivradar. Es wird gezeigt, dass nichtlineare Verzerrungen erfolgreich in der digitalen Domäne gemindert werden können, wodurch die Bitfehlerrate gestörter modulierter Signale sinkt und der Anteil nichtlinear verursachter Interferenz minimiert wird. Schließlich kann durch das Verfahren die effektive Linearität des HF-Frontends stark erhöht werden. Damit wird der zuverlässige Betrieb eines einfachen Funkmoduls unter dem Einfluss der Empfängernichtlinearität möglich. Aufgrund des flexiblen Designs ist der Algorithmus für breitbandige Empfänger universal einsetzbar und ist nicht auf Software-konfigurierbare Funkmodule beschränkt.Today's wireless communication systems place high requirements on the radio's hardware that are largely mutually exclusive, such as low power consumption, wide bandwidth, and high linearity. Achieving a sufficient linearity, among other analogue characteristics, is a challenging issue in practical transceiver design. The focus of this thesis is on wideband receiver RF front-ends for software defined radio technology, which became commercially available in the recent years. Practical challenges and limitations are being revealed in real-world experiments with these radios. One of the main problems is to ensure a sufficient RF performance of the front-end over a wide bandwidth. The thesis covers the analysis and mitigation of receiver non-linearity of typical direct-conversion receiver architectures, among other RF impairments. The main focus is on DSP-based algorithms for mitigating non-linearly induced interference, an approach also known as "Dirty RF" signal processing techniques. The conceived digital feedforward mitigation algorithm is verified through extensive simulations, RF measurements, and implementation in real hardware. Various studies are carried out that bridge the gap between theory and practical applicability of this approach, especially with the aim of integrating that technique into real devices. To this end, an advanced baseband behavioural model is developed that matches to direct-conversion receiver architectures as close as possible, and thus considers all generated distortions at RF and baseband. In addition, the algorithm's performance is verified under challenging fading conditions. Moreover, the thesis presents a resource-efficient real-time implementation of the proposed solution on an FPGA. Finally, different use cases are covered in the thesis that includes spectrum monitoring or sensing, GSM downlink reception, and GSM-based passive radar. It is shown that non-linear distortions can be successfully mitigated at system level in the digital domain, thereby decreasing the bit error rate of distorted modulated signals and reducing the amount of non-linearly induced interference. Finally, the effective linearity of the front-end is increased substantially. Thus, the proper operation of a low-cost radio under presence of receiver non-linearity is possible. Due to the flexible design, the algorithm is generally applicable for wideband receivers and is not restricted to software defined radios

    A LINEARIZATION METHOD FOR A UWB VCO-BASED CHIRP GENERATOR USING DUAL COMPENSATION

    Get PDF
    Ultra-Wideband (UWB) chirp generators are used on Frequency Modulated Continuous Wave (FMCW) radar systems for high-resolution and high-accuracy range measurements. At the Center for Remote Sensing of Ice Sheets (CReSIS), we have developed two UWB radar sensors for high resolution measurements of surface elevation and snow cover over Greenland and Antarctica. These radar systems are routinely operated from both surface and airborne platforms. Low cost implementations of UWB chirp generators are possible using an UWB Voltage Controlled Oscillator (VCO). VCOs possess several advantages over other competing technologies, but their frequency-voltage tuning characteristics are inherently non-linear. This nonlinear relationship between the tuning voltage and the output frequency should be corrected with a linearization system to implement a linear frequency modulated (LFM) waveform, also known as a chirp. If the waveform is not properly linearized, undesired additional frequency modulation is found in the waveform. This additional frequency modulation results in undesired sidebands at the frequency spectrum of the Intermediate Frequency (IF) stage of the FMCW radar. Since the spectrum of the filtered IF stage represents the measured range, the uncorrected nonlinear behavior of the VCO will cause a degradation of the range sensing performance of a FMCW radar. This issue is intensified as the chirp rate and nominal range of the target increase. A linearization method has been developed to linearize the output of a VCO-based chirp generator with 6 GHz of bandwidth. The linearization system is composed of a Phase Lock Loop (PLL) and an external compensation added to the loop. The nonlinear behavior of the VCO was treated as added disturbances to the loop, and a wide loop bandwidth PLL was designed for wideband compensation of these disturbances. Moreover, the PLL requires a loop filter able to attenuate the reference spurs. The PLL has been designed with a loop bandwidth as wide as possible while maintaining the reference spur level below 35 dBc. Several design considerations were made for the large loop bandwidth design. Furthermore, the large variations in the tuning sensitivity of the oscillator forced a design with a large phase margin at the average tuning sensitivity. This design constraint degraded the tracking performance of the PLL. A second compensation signal, externally generated, was added to the compensation signal of the PLL. By adding a compensation signal, which was not affected by the frequency response effects of the loop compensation, the loop tracking error is reduced. This technique enabled us to produce an output chirp signal that is a much closer replica of the scaled version of the reference signal. Furthermore, a type 1 PLL was chosen for improved transient response, compared to that of the type 2 PLL. This type of PLL requires an external compensation to obtain a finite steady state error when applying a frequency ramp to the input. The external compensation signal required to solve this issue was included in the second compensation signal mentioned above. Measurements for the PLL performance and the chirp generator performance were performed in the laboratory using a radar demonstrator. The experimental results show that the designed loop bandwidth was successfully achieved without significantly increasing the spurious signal level. The chirp generator measurements show a direct relationship between the bandwidth of the external compensation and the range resolution performance

    ULTRA-WIDEBAND NONLINEAR ECHO-CANCELLATION

    Get PDF
    Hybrid fiber coaxial (HFC) networks are used around the world to distribute cable television and broadband internet services to customers. These networks are governed by the Data-Over-Cable Service Interface Specification (DOCSIS) family of standards, with the most recent version at the time of this writing being DOCSIS 3.1. A frequency division duplex (FDD) spectrum is used in DOCSIS 3.1, where the upstream and downstream signals are separated in frequency to eliminate interference. A possible method to increase signal bandwidths is to use a full-duplex (FDX) spectrum, in which the US and DS signals use the same frequencies at the same time. A main challenge faced when implementing FDX in a DOCSIS node is eliminating the interference in the received US signal caused by the transmitted DS signal. One possible method for eliminating the interference is utilizing an echo-canceling algorithm, which predicts the self-interference (SI) based on the known DS signal and cancels it from the received US signal. Although echo-cancellation algorithms exist for fundamentally similar applications, the DOCSIS FDX case is more complicated for two main reasons. First, the DOCSIS node uses a nonlinear power amplifier to amplify the DS signal. Second, the DS signal is an ultra-wideband signal spanning a frequency range of up to 1.2 GHz. Most of the amplifier modeling techniques discussed in the literature were designed for narrowband wireless signals and will have limited performance when used with ultra-wideband signals. This thesis develops an algorithm to characterize the power amplifier and to predict the harmonics it generates for a given DS signal. These predicted harmonics can be used to cancel the SI signal in a full duplex DOCSIS system. The algorithm, which is referred to as the ultra-wideband memory polynomial (UWB-MP) model, is based on the well-known memory polynomial model with adaptations which allow the model to predict harmonics for ultra-wideband signals. Since a direct implementation of the UWB-MP model in an FPGA would result in very high resource usage, system architecture recommendations are provided. Our proposed implementation of the model compensates for harmonics up to and including the 3rd order, which has a power spectrum extending above 3600 MHz. Using the techniques discussed in this thesis, it is shown that a sampling rate of 4 GHz allows for cancellation of the SI signal while providing a reasonable balance between performance and resource usage. Matlab simulations of a DOCSIS node with various parameters and PA simulation models were conducted. The simulations showed that over 75 dB of cancellation of the SI signal is possible in an idealized hardware setup. It is also demonstrated that AWGN injected into the received signal does not reduce the ability of the model to estimate the PA harmonics, although the noise itself cannot be canceled. Further simulations showed that the UWB-MP model could cancel harmonics whose power is much higher than that specified in DOCSIS. Although the UWB-MP model was designed with memory polynomial type PAs in mind, simulation results show that significant cancellation is possible with PAs that are represented by Wiener models as well. Based on the simulation results, we recommend using a filter of length 20 coefficients for each harmonic in the UWB-MP model, and 60 iterations with 500 samples for estimating the coefficients with the least squares method

    Digital Pre-distortion for Interference Reduction in Dynamic Spectrum Access Networks

    Get PDF
    Given the ever increasing reliance of today’s society on ubiquitous wireless access, the paradigm of dynamic spectrum access (DSA) as been proposed and implemented for utilizing the limited wireless spectrum more efficiently. Orthogonal frequency division multiplexing (OFDM) is growing in popularity for adoption into wireless services employing DSA frame- work, due to its high bandwidth efficiency and resiliency to multipath fading. While these advantages have been proven for many wireless applications, including LTE-Advanced and numerous IEEE wireless standards, one potential drawback of OFDM or its non-contiguous variant, NC-OFDM, is that it exhibits high peak-to-average power ratios (PAPR), which can induce in-band and out-of-band (OOB) distortions when the peaks of the waveform enter the compression region of the transmitter power amplifier (PA). Such OOB emissions can interfere with existing neighboring transmissions, and thereby severely deteriorate the reliability of the DSA network. A performance-enhancing digital pre-distortion (DPD) technique compensating for PA and in-phase/quadrature (I/Q) modulator distortions is proposed in this dissertation. Al- though substantial research efforts into designing DPD schemes have already been presented in the open literature, there still exists numerous opportunities to further improve upon the performance of OOB suppression for NC-OFDM transmission in the presence of RF front-end impairments. A set of orthogonal polynomial basis functions is proposed in this dissertation together with a simplified joint DPD structure. A performance analysis is presented to show that the OOB emissions is reduced to approximately 50 dBc with proposed algorithms employed during NC-OFDM transmission. Furthermore, a novel and intuitive DPD solution that can minimize the power regrowth at any pre-specified frequency in the spurious domain is proposed in this dissertation. Conventional DPD methods have been proven to be able to effectively reduce the OOB emissions that fall on top of adjacent channels. However more spectral emissions in more distant frequency ranges are generated by employing such DPD solutions, which are potentially in violation of the spurious emission limit. At the same time, the emissions in adjacent channel must be kept under the OOB limit. To the best of the author’s knowledge, there has not been extensive research conducted on this topic. Mathematical derivation procedures of the proposed algorithm are provided for both memoryless nonlinear model and memory-based nonlinear model. Simulation results show that the proposed method is able to provide a good balance of OOB emissions and emissions in the far out spurious domain, by reducing the spurious emissions by 4-5 dB while maintaining the adjacent channel leakage ratio (ACLR) improvement by at least 10 dB, comparing to the PA output spectrum without any DPD

    Auxiliary-Path-Assisted Digital Linearization of Wideband Wireless Receivers

    Get PDF
    Wireless communication systems in recent years have aimed at increasing data rates by ensuring flexible and efficient use of the radio spectrum. The dernier cri in this field has been in the area of carrier aggregation and cognitive radio. Carrier aggregation is a major component of LTE-Advanced. With carrier aggregation, a number of separate LTE carriers can be combined, by mobile network operators, to increase peak data rates and overall network capacity. Cognitive radios, on the other hand, allow efficient spectrum usage by locating and using spatially vacant spectral bands. High monolithic integration in these application fields can be achieved by employing receiver architectures such as the wideband direct conversion receiver topology. This is advantageous from the view point of cost, power consumption and size. However, many challenges exist, of particular importance is nonlinear distortion arising from analog front-end components such as low noise amplifiers (LNA). Nonlinear distortions especially become severe when several signals of varying amplitudes are received simultaneously. In such cases, nonlinear distortions stemming from strong signals may deteriorate the reception of the weaker signals, and also impair the receiver’s spectrum sensing capabilities. Nonlinearity, usually a consequence of dynamic range limitation, degrades performance in wideband multi-operator communications systems, and it will have a notable role in future wireless communication system design. This thesis presents a digital domain linearization technique that employs a very nonlinear auxiliary receiver path for nonlinear distortion cancellation. The proposed linearization technique relies on one-time adaptively-determined linearization coefficients for cancelling nonlinear distortions. Specifically, we take a look at canceling the troublesome in-band third order intermodulation products using the proposed technique. The proposed technique can be extended to cancel out both even and higher order odd intermodulation products. Dynamic behavioral models are used to account for RF nonlinearities, including memory effects which cannot be ignored in the wideband scenario. Since the proposed linearization technique involves the use of two receiver paths, techniques for correcting phase delays between the two paths are also introduced. Simplicity is the hallmark of the proposed linearization technique. It can achieve up to +30 dBm in IIP3 performance with ADC resolution being a major performance bottleneck. It also shows strong tolerance to strong blocker nonlinearities
    corecore