98 research outputs found

    How Agile is the Adaptive Data Rate Mechanism of LoRaWAN?

    Get PDF
    The LoRaWAN based Low Power Wide Area networks aim to provide long-range connectivity to a large number of devices by exploiting limited radio resources. The Adaptive Data Rate (ADR) mechanism controls the assignment of these resources to individual end-devices by a runtime adaptation of their communication parameters when the quality of links inevitably changes over time. This paper provides a detailed performance analysis of the ADR technique presented in the recently released LoRaWAN Specifications (v1.1). We show that the ADR technique lacks the agility to adapt to the changing link conditions, requiring a number of hours to days to converge to a reliable and energy-efficient communication state. As a vital step towards improving this situation, we then change different control knobs or parameters in the ADR technique to observe their effects on the convergence time.Comment: 9 Figures, 2 Tables Accepted to appear in the proceedings of IEEE GLOBECOM 201

    6LoRa: Full Stack IPv6 Networking with DSME-LoRa on Low Power IoT Nodes

    Full text link
    Long range wireless transmission techniques such as LoRa are preferential candidates for a substantial class of IoT applications, as they avoid the complexity of multi-hop wireless forwarding. The existing network solutions for LoRa, however, are not suitable for peer-to-peer communication, which is a key requirement for many IoT applications. In this work, we propose a networking system - 6LoRa, that enables IPv6 communication over LoRa. We present a full stack system implementation on RIOT OS and evaluate the system on a real testbed using realistic application scenarios with CoAP. Our findings confirm that our approach outperforms existing solutions in terms of transmission delay and packet reception ratio at comparable energy consumption

    ChirpOTLE: A Framework for Practical LoRaWAN Security Evaluation

    Full text link
    Low-power wide-area networks (LPWANs) are becoming an integral part of the Internet of Things. As a consequence, businesses, administration, and, subsequently, society itself depend on the reliability and availability of these communication networks. Released in 2015, LoRaWAN gained popularity and attracted the focus of security research, revealing a number of vulnerabilities. This lead to the revised LoRaWAN 1.1 specification in late 2017. Most of previous work focused on simulation and theoretical approaches. Interoperability and the variety of implementations complicate the risk assessment for a specific LoRaWAN network. In this paper, we address these issues by introducing ChirpOTLE, a LoRa and LoRaWAN security evaluation framework suitable for rapid iteration and testing of attacks in testbeds and assessing the security of real-world networks.We demonstrate the potential of our framework by verifying the applicability of a novel denial-of-service attack targeting the adaptive data rate mechanism in a testbed using common off-the-shelf hardware. Furthermore, we show the feasibility of the Class B beacon spoofing attack, which has not been demonstrated in practice before.Comment: 11 pages, 14 figures, accepted at ACM WiSec 2020 (13th ACM Conference on Security and Privacy in Wireless and Mobile Networks

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Reliable LoRaWAN links: performance analysis

    Get PDF
    Nowadays the IoT paradigm is attracting interest in the scientific and commercial fields. This thesis focuses on the solution combining LoRa and LoRaWAN and on its performance when reliable communication is employed. The discussion presents the implementation of LoRaWAN reliable communication in the ns-3 simulator and proposes a mathematical model for performance evaluation. The performance of the system and the validity of the proposed model are evaluated by means of simulations

    Polling-Based Downlink Communication Protocol for LoRaWAN using Traffic Indication

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ๊น€์ข…๊ถŒ.LPWAN (Low Power Wide Area Network) technologies such as LoRa and SigFox are emerging as a technology of choice for the Internet of Things (IoT) applications where tens of thousands of untethered devices are deployed over a wide area. In such operating environments, energy conservation is one of the most crucial concerns and network protocols adopt various power saving schemes to lengthen device lifetimes. For example, to avoid idle listening, LoRaWAN restricts downlink communications. However, the confined design philosophy impedes the deployment of IoT applications that require asynchronous downlink communications. In this thesis, we design and implement an energy efficient downlink communication mechanism, named TRILO, for LoRaWAN. We aim to make TRILO be energy efficient while obeying an unavoidable trade-off that balances between latency and energy consumption. TRILO adopts a beacon mechanism that periodically alerts end-devices which have pending downlink frames. We implement the proposed protocol on top of commercially available LoRaWAN components and confirm that the protocol operates properly in real-world experiments. Experimental results show that TRILO successfully transmits downlink frames without losses while uplink traffic suffers from a slight increase in latency because uplink transmissions should halt during beacons and downlink transmissions. Computer simulation results also show that the proposed scheme is more energy efficient than the legacy LoRaWAN downlink protocol.์ „๋ ฅ ๊ณต๊ธ‰์ด ์ œํ•œ์ ์ธ ์ˆ˜ ๋งŒ๊ฐœ์˜ ๋””๋ฐ”์ด์Šค๋“ค์„ ์ด์šฉํ•˜์—ฌ ๋„“์€ ์ง€์—ญ์„ ๋ฐ”ํƒ•์œผ๋กœ ์šด์˜๋˜๋Š” ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๋Š” ๋ฐ์— ์žˆ์–ด์„œ LoRa, SigFox์™€ ๊ฐ™์€ ์ €์ „๋ ฅ ๊ด‘์—ญ ๋„คํŠธ์›Œํฌ ๊ธฐ์ˆ (LPWA)์ด ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‹œ์Šคํ…œ ํ™˜๊ฒฝ์—์„œ ์—๋„ˆ์ง€ ์ ˆ์•ฝ์€ ์ค‘์š”ํ•œ ๊ด€์‹ฌ์‚ฌ ์ค‘ ํ•˜๋‚˜์ด๋ฉฐ ๋„คํŠธ์›Œํฌ ํ”„๋กœํ† ์ฝœ๋“ค์€ ๋‹ค์–‘ํ•œ ์ ˆ์ „ ๋ฐฉ์‹์„ ์ฑ„ํƒํ•˜์—ฌ ๋””๋ฐ”์ด์Šค์˜ ์ˆ˜๋ช…์„ ๋ณด์žฅํ•˜๋ ค ํ•˜๊ณ  ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ๋ถˆํ•„์š”ํ•œ ๋Œ€๊ธฐ ์ฒญ์ทจ๋กœ ์ธํ•œ ์—๋„ˆ์ง€ ์†์‹ค์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด์„œ LoRaWAN์€ ๋‹ค์šด๋งํฌ ํ†ต์‹ ์„ ์ œํ•œํ•˜๊ณ  ์žˆ๋Š”๋ฐ, ์ด๋Ÿฌํ•œ ์„ค๊ณ„ ์ฒ ํ•™์€ ๋น„๋™๊ธฐ์ ์ธ ๋‹ค์šด๋งํฌ ํ†ต์‹ ์„ ํ•„์š”๋กœ ํ•˜๋Š” IoT ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์˜ ์š”๊ตฌ ์‚ฌํ•ญ์„ ์ถฉ์กฑ์‹œํ‚ค์ง€ ๋ชปํ•˜๋Š” ๋ฌธ์ œ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” LoRaWAN์—์„œ ๋‹ค์šด๋งํฌ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ปจํŠธ๋กคํ•  ์ˆ˜ ์žˆ๋„๋ก TRILO๋ผ๋Š” ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ๋‹ค์šด๋งํฌ ํ†ต์‹  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์„ค๊ณ„ํ•˜๊ณ  ๊ตฌํ˜„ํ•˜์˜€๋‹ค. TRILO๋Š” ๋‹ค์šด๋งํฌ ํ”„๋ ˆ์ž„์ด ํŒฌ๋”ฉ๋˜์–ด ์žˆ๋Š” ์—”๋“œ ๋””๋ฐ”์ด์Šค๋“ค์˜ ๋ฆฌ์ŠคํŠธ ์ •๋ณด๋ฅผ ์ฃผ๊ธฐ์ ์œผ๋กœ ๋„คํŠธ์›Œํฌ์— ์•Œ๋ฆฌ๋Š” ๋น„์ฝ˜ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ฑ„ํƒํ•˜์˜€๊ณ , ์„œ๋ฒ„์™€ ๋””๋ฐ”์ด์Šค๋“ค์ด ๊ฐ๊ฐ ์ •ํ•ด์ง„ ์ˆœ์„œ์— ๋”ฐ๋ผ ๋‹ค์šด๋งํฌ ์ „์†ก ๋ฐ ์ˆ˜์‹ ์„ ์Šค์ผ€์ค„๋งํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ์„ค๊ณ„ํ•œ ํ”„๋กœํ† ์ฝœ์ด ์ œ๋Œ€๋กœ ๋™์ž‘ํ•˜๋Š”์ง€ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด์„œ ๊ธฐ์กด LoRaWAN์˜ ๊ตฌ์„ฑ ์š”์†Œ ์œ„์— ์ œ์•ˆ๋œ ํ”„๋กœํ† ์ฝœ์„ ๊ตฌํ˜„ํ•œ ํ›„ ์‹ค์ œ ํ…Œ์ŠคํŠธ ๋ฒ ๋“œ๋ฅผ ๊ตฌ์ถ•ํ•˜์—ฌ์„œ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ์— ๋”ฐ๋ฅด๋ฉด TRILO๋Š” ๊ธฐ์กด ํ”„๋กœํ† ์ฝœ์˜ ์—…๋งํฌ ํ†ต์‹  ์„ฑ๋Šฅ์„ ์ €ํ•ดํ•˜์ง€ ์•Š์œผ๋ฉด์„œ๋„ ์ถ”๊ฐ€์ ์ธ ๋‹ค์šด๋งํฌ ํ”„๋ ˆ์ž„์„ ์†์‹ค ์—†์ด ์„ฑ๊ณต์ ์œผ๋กœ ์ „์†ก ๋ฐ ์ˆ˜์‹ ํ•˜์˜€๊ณ , ์ปดํ“จํ„ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ ๋˜ํ•œ ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์ด ๊ธฐ์กด์˜ LoRaWAN ๋‹ค์šด๋งํฌ ํ”„๋กœํ† ์ฝœ๋ณด๋‹ค ๋” ์—๋„ˆ์ง€ ํšจ์œจ์ ์œผ๋กœ ๋™์ž‘ํ•˜๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.ABSTRACT ........................................................................................................... โ…ฐ CONTENTS ........................................................................................................... โ…ฒ LIST OF FIGURES ............................................................................................ โ…ณ LIST OF TABLES .............................................................................................. โ…ต CHAPTER โ… : Introduction ................................................................................ 1 CHAPTER โ…ก: Related Work ............................................................................. 8 CHAPTER โ…ข: A Primer on LoRa and LoRaWAN .................................. 11 CHAPTER โ…ฃ: Downlink Communications Scheme .................................. 17 4.1 Comparison of Two Polling Schemes ..................................... 19 4.2 Proposed Downlink Communications Scheme ....................... 26 CHAPTER โ…ค: Implementation ........................................................................ 28 CHAPTER โ…ฅ: Evaluation ................................................................................. 31 6.1 Experimental Results .................................................................... 32 6.2 Simulation Results ......................................................................... 37 CHAPTER โ…ฆ: Discussion ................................................................................. 42 CHAPTER โ…ง: Conclusion ................................................................................. 45 BIBLIOGRAPHY ................................................................................................... 47 ์ดˆ๋ก ........................................................................................................................... 51Maste

    A survey on the viability of confirmed traffic in a LoRaWAN

    Get PDF
    Internet of Things (IoT) deployments are on the rise globally with Low Power Wide Area Networks (LPWAN) providing the wireless networks needed for this expansion. One of these technologies namely Long Range Wide Area Network (LoRaWAN) has proven to be a very popular choice. The LoRaWAN protocol allows for confirmed traffic from the end device to the gateway (uplink) and the reverse (downlink), increasing the number of IoT use cases that it can support. However, this comes at a cost as downlink traffic severely impacts scalability due to in part a gateway's duty cycle restrictions. This paper highlights some of the use cases that require confirmed traffic, examines the recent works focused on LoRaWAN confirmed traffic and discusses the mechanism with which is implemented. It was found that confirmed traffic is viable in small networks, especially when data transfer is infrequent. Additionally, the following aspects negatively impact the viability of confirmed traffic in large networks: the duty cycle restrictions placed on gateways, the use of spreading factor 12 for receive window 2 transmissions, a high maximum number of transmissions (NbTrans) and the ACK_TIMEOUT transmission backoff interval. The paper also raises and suggests solutions to open research challenges that must be overcome to increase the viability of confirmed traffic.The Council for Scientific and Industrial Research of South Africa and Telkom.http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639am2020Electrical, Electronic and Computer Engineerin

    LoRaWAN device security and energy optimization

    Get PDF
    Resource-constrained devices are commonly connected to a network and become things that make up the Internet of Things (IoT). Many industries are interested in cost-effective, reliable, and cyber secure sensor networks due to the ever-increasing connectivity and benefits of IoT devices. The full advantages of IoT devices are seen in a long-range and remote context. However, current IoT platforms show many obstacles to achieve a balance between power efficiency and cybersecurity. Battery-powered sensor nodes can reliably send data over long distances with minimal power draw by adopting Long-Range (LoRa) wireless radio frequency technology. With LoRa, these devices can stay active for many years due to a low data bit rate and low power draw during device sleep states. An improvement built on top of LoRa wireless technology, Long-Range Wide Area Networks (LoRaWAN), introduces integrity and confidentiality of the data sent within the IoT network. Although data sent from a LoRaWAN device is encrypted, protocol and implementation vulnerabilities still exist within the network, resulting in security risks to the whole system. In this research, solutions to these vulnerabilities are proposed and implemented on a LoRaWAN testbed environment that contains devices, gateways, and servers. Configurations that involve the transmission of data using AES Round Reduction, Join Scheduling, and Metadata Hiding are proposed in this work. A power consumption analysis is performed on the implemented configurations, resulting in a LoRaWAN system that balances cybersecurity and battery life. The resulting configurations may be harnessed for usage in the safe, secure, and efficient provisioning of LoRaWAN devices in technologies such as Smart-Industry, Smart-Environment, Smart-Agriculture, Smart-Universities, Smart-Cities, et
    • โ€ฆ
    corecore