404 research outputs found

    The nodal structure of doubly-excited resonant states of helium

    Get PDF
    The authors examine the nodal structure of accurate helium wavefunctions calculated by direct diagonalization of the full six-dimensional problem. It is shown that for fixed interelectronic distance R (or hyperspherical radius R) the symmetric doubly-excited resonant states have well defined lambda , mu nodal structure indicating a near separability in prolate spheroidal coordinates. For fixed lambda , however, a clear mixing of R, mu nodes is demonstrated. This corresponds to a breakdown of the adiabatic approximation and can be understood in terms of the classical two-electron motion

    Reduced bending and scattering losses in new optical `double-ridge' waveguide

    Get PDF
    A new type of waveguide is proposed combining a low and a high ridge. Experiments at lambda =632.8 nm show an excess loss of 0.6 dB for a 90 degrees bend with R=50 mu m in SiO/sub 2/ cladded Al/sub 2/O/sub 3/, and showing reduced scattering losses compared with a conventional ridge waveguid

    The Kabua 1 cranium: Virtual anatomical reconstructions

    Get PDF
    Our current knowledge of the emergence of anatomically modern humans, and the human lineage in general, is limited, in large part because of the lack of a well preserved and well dated fossil record from Pleistocene Africa. Thus, the primary aim of our research is to partly relieve this problem by virtually reconstructing and analyzing the hominin cranial remains of Kabua 1, found in Kenya in the 1950s. Most scholars have argued that Kabua 1 represents an anatomically modern Homo sapiens, although the fragmentary nature of the remains and lack of a chronometric date hinder robust phylogenetic and taxonomic assessments. This manuscript presents the first steps taken to resolve this issue, namely a set of reconstructions of the specimen that would allow comparison with the fossil record. First, we virtually removed sediment and laboratory adhesives from ÎĽct scans of the fragments. Subsequently, all fragments were separated by segmentation of the ÎĽct data and described. Finally, virtual surface projections were used in the creation of several anatomical reconstructions, based on separate reference crania. These first steps provide a framework that will be used for quantitative shape analyses that aim to more firmly place these remains in the context of human evolution

    LCS Tool : A Computational Platform for Lagrangian Coherent Structures

    Full text link
    We give an algorithmic introduction to Lagrangian coherent structures (LCSs) using a newly developed computational engine, LCS Tool. LCSs are most repelling, attracting and shearing material lines that form the centerpieces of observed tracer patterns in two-dimensional unsteady dynamical systems. LCS Tool implements the latest geodesic theory of LCSs for two-dimensional flows, uncovering key transport barriers in unsteady flow velocity data as explicit solutions of differential equations. After a review of the underlying theory, we explain the steps and numerical methods used by LCS Tool, and illustrate its capabilities on three unsteady fluid flow examples

    Directional and singular surface plasmon generation in chiral and achiral nanostructures demonstrated by Leakage Radiation Microscopy

    Full text link
    In this paper, we describe the implementation of leakage radiation microscopy (LRM) to probe the chirality of plasmonic nanostructures. We demonstrate experimentally spin-driven directional coupling as well as vortex generation of surface plasmon polaritons (SPPs) by nanostructures built with T-shaped and Λ\Lambda- shaped apertures. Using this far-field method, quantitative inspections, including directivity and extinction ratio measurements, are achieved via polarization analysis in both image and Fourier planes. To support our experimental findings, we develop an analytical model based on a multidipolar representation of Λ\Lambda- and T-shaped aperture plasmonic coupler allowing a theoretical explanation of both directionality and singular SPP formation. Furthermore, the roles of symmetry breaking and phases are emphasized in this work. This quantitative characterization of spin-orbit interactions paves the way for developing new directional couplers for subwavelength routing

    Lambda(+)(c) production in pp collisions at root s=7 TeV and in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    The p(T)-differential production cross section of prompt Lambda(+)(c) charmed baryons was measured with the ALICE detector at the Large Hadron Collider (LHC) in pp collisions at root s = 7 TeV and in p-Pb collisions at root s(NN) = 5.02 TeV at midrapidity. The Lambda(+)(c) and (Lambda) over bar (-)(c) were reconstructed in the hadronic decay modes Lambda(+)(c) -> pK(-)pi(+), Lambda(+)(c)-> pK(S)(0)) and in the semileptonic channel Lambda(+ )(c)-> e(+)nu(e)Lambda (and charge conjugates). The measured values of the Lambda(+)(c)/D-0 ratio, which is sensitive to the c-quark hadronisation mechanism, and in particular to the production of baryons, are presented and are larger than those measured previously in different colliding systems, centre-of-mass energies, rapidity and p(T) intervals, where the Lambda(+)(c) production process may differ. The results are compared with the expectations obtained from perturbative Quantum Chromodynamics calculations and Monte Carlo event generators. Neither perturbative QCD calculations nor Monte Carlo models reproduce the data, indicating that the fragmentation of heavy-flavour baryons is not well understood. The first measurement at the LHC of the Lambda(+)(c) nuclear modification factor, R-ppb, is also presented. The R-ppb is found to be consistent with unity and with that of D mesons within the uncertainties, and consistent with a theoretical calculation that includes cold nuclear matter effects and a calculation that includes charm quark interactions with a deconfined medium.Peer reviewe

    Computational analysis of hypersonic flows past elliptic-cone waveriders

    Get PDF
    A comprehensive study for the inviscid numerical calculation of the hypersonic flow past a class of elliptic-cone derived waveriders is presented. The theoretical background associated with hypersonic small-disturbance theory (HSDT) is reviewed. Several approximation formulas for the waverider compression surface are established. A CFD algorithm is used to calculate flow fields for the on-design case and a variety of off-design cases. The results are compared with HSDT, experiment, and other available CFD results. For the waverider shape used in previous investigations, the bow shock for the on-design condition stands off from the leading-edge tip of the waverider. It was found that this occurs because the tip was too thick according to the approximating shape formula that was used to describe the compression surface. When this was corrected, the bow shock became closer to attached as it should be. At Mach numbers greater than the design condition, a lambda-shock configuration develops near the tip of the compression surface. At negative angles of attack, other complicated shock patterns occur near the leading-edge tip. These heretofore unknown flow patterns show the power and utility of CFD for investigating novel hypersonic configurations such as waveriders
    • …
    corecore