27 research outputs found

    Mitigation techniques through spatial diversity combining and relay-assisted technology in a turbulence impaired and misaligned free space optical channel.

    Get PDF
    Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal, Durban, 2018.In recent times, spectrum resource scarcity in Radio Frequency (RF) systems is one of the biggest and prime issues in the area of wireless communications. Owing to the cost of spectrum, increase in the bandwidth allocation as alternative solution, employed in the recent past, does no longer offer an effective means to fulfilling high demand in higher data rates. Consequently, Free Space Optical (FSO) communication systems has received considerable attention in the research community as an attractive means among other popular solutions to offering high bandwidth and high capacity compared to conventional RF systems. In addition, FSO systems have positive features which include license-free operation, cheap and ease of deployment, immunity to interference, high security, etc. Thus, FSO systems have been favoured in many areas especially, as a viable solution for the last-mile connectivity problem and a potential candidate for heterogeneous wireless backhaul network. With these attractive features, however, FSO systems are weather-dependent wireless channels. Therefore, it is usually susceptible to atmospheric induced turbulence, pointing error and attenuation under adverse weather conditions which impose severe challenges on the system performance and transmission reliability. Thus, before widespread deployment of the system will be possible, promising mitigation techniques need to be found to address these problems. In this thesis, the performance of spatial diversity combining and relay-assisted techniques with Spatial Modulation (SM) as viable mitigating tools to overcome the problem of atmospheric channel impairments along the FSO communication system link is studied. Firstly, the performance analysis of a heterodyne FSO-SM system with different diversity combiners such as Maximum Ratio Combining (MRC), Equal Gain Combining (EGC) and Selection Combining (SC) under the influence of lognormal and Gamma-Gamma atmospheric-induced turbulence fading is presented. A theoretical framework for the system error is provided by deriving the Average Pairwise Error Probability (APEP) expression for each diversity scheme under study and union bounding technique is applied to obtain their Average Bit Error Rate (ABER). Under the influence of Gamma-Gamma turbulence, an APEP expression is obtained through a generalized infinite power series expansion approach and the system performance is further enhanced by convolutional coding technique. Furthermore, the performance of proposed system under the combined effect of misalignment and Gamma-Gamma turbulence fading is also studied using the same mathematical approach. Moreover, the performance analysis of relay-assisted dual-hop heterodyne FSO-SM system with diversity combiners over a Gamma-Gamma atmospheric turbulence channel using Decode-and-Forward (DF) relay and Amplify-and-Forward (AF) relay protocols also is presented. Under DF dual-hop FSO system, power series expansion of the modified Bessel function is used to derive the closed-form expression for the end-to-end APEP expressions for each of the combiners under study over Gamma-Gamma channel, and a tight upper bound on the ABER per hop is given. Thus, the overall end-to-end ABER for the dual-hop FSO system is then evaluated. Under AF dual-hop FSO system, the statistical characteristics of AF relay in terms of Moment Generating Function (MGF), Probability Density Function (PDF) and Cumulative Distribution Function (CDF) are derived for the combined Gamma-Gamma turbulence and/or pointing error distributions channel in terms of Meijer-G function. Based on these expressions, the APEP for each of the under studied combiners is determined and the ABER for the system is given by using union bounding technique. By utilizing the derived ABER expressions, the effective capacity for the considered system is then obtained. Furthermore, the performance of a dual-hop heterodyne FSO-SM asymmetric RF/FSO relaying system with MRC as mitigation tools at the destination is evaluated. The RF link experiences Nakagami-m distribution and FSO link is subjected to Gamma-Gamma distribution with and/or without pointing error. The MGF of the system equivalent SNR is derived using the CDF of the system equivalent SNR. Utilizing the MGF, the APEP for the system is then obtained and the ABER for the system is determined. Finally, owing to the slow nature of the FSO channel, the Block Error Rate (BLER) performance of FSO Subcarrier Intensity Modulation (SIM) system with spatial diversity combiners employing Binary Phase Shift Keying (BPSK) modulation over Gamma-Gamma atmospheric turbulence with and without pointing error is studied. The channel PDF for MRC and EGC by using power series expansion of the modified Bessel function is derived. Through this, the BLER closed-form expressions for the combiners under study are obtained

    Investigation on iterative multiuser detection physical layer network coding in two-way relay free-space optical links with turbulences and pointing errors

    Get PDF
    Physical layer network coding (PNC) improves the throughput in wireless networks by enabling two nodes to exchange information using a minimum number of time slots. The PNC technique is proposed for two-way relay channel free space optical (TWR-FSO) communications with the aim of maximizing the utilization of network resources. The multipair TWR-FSO is considered in this paper, where a single antenna on each pair seeks to communicate via a common receiver aperture at the relay. Therefore, chip interleaving is adopted as a technique to separate the different transmitted signals at the relay node to perform PNC mapping. Accordingly, this scheme relies on the iterative multiuser technique for detection of users at the receiver. The bit error rate (BER) performance of the proposed system is examined under the combined influences of atmospheric loss, turbulence-induced channel fading, and pointing errors (PEs). By adopting the joint PNC mapping with interleaving and multiuser detection techniques, the BER results show that the proposed scheme can achieve a significant performance improvement against the degrading effects of turbulences and PEs. It is also demonstrated that a larger number of simultaneous users can be supported with this new scheme in establishing a communication link between multiple pairs of nodes in two time slots, thereby improving the channel capacity

    Hybrid Free-Space Optical and Visible Light Communication Link

    Get PDF
    V součastnosti bezdrátové optické komunikace (optical wireless communication, OWC) získávají širokou pozornost jako vhodný doplněk ke komunikačním přenosům v rádiovém pásmu. OWC nabízejí několik výhod včetně větší šířky přenosového pásma, neregulovaného frekvenčního pásma či odolnosti vůči elektromagnetickému rušení. Tato práce se zabývá návrhem OWC systémů pro připojení koncových uživatelů. Samotná realizace spojení může být provedena za pomoci různých variant bezdrátových technologií, například pomocí OWC, kombinací různých OWC technologií nebo hybridním rádio-optickým spojem. Za účelem propojení tzv. poslední míle je analyzován optický bezvláknový spoj (free space optics, FSO). Tato práce se dále zabývá analýzou přenosových vlastností celo-optického více skokového spoje s důrazem na vliv atmosférických podmínek. V dnešní době mnoho uživatelů tráví čas ve vnitřních prostorech kanceláří či doma, kde komunikace ve viditelném spektru (visible light communication, VLC) poskytuje lepší přenosové parametry pokrytí než úzce směrové FSO. V rámci této práce byla odvozena a experimentálně ověřena závislost pro bitovou chybovost přesměrovaného (relaying) spoje ve VLC. Pro propojení poskytovatele datavých služeb s koncovým uživatelem může být výhodné zkombinovat více přenosových technologií. Proto je navržen a analyzovám systém pro překonání tzv. problému poslední míle a posledního metru kombinující hybridní FSO a VLC technologie.The field of optical wireless communications (OWC) has recently attracted significant attention as a complementary technology to radio frequency (RF). OWC systems offer several advantages including higher bandwidth, an unregulated spectrum, resistance to electromagnetic interference and a high order of reusability. The thesis focuses on the deployment and analyses of end-user interconnections using the OWC systems. Interconnection can be established by many wireless technologies, for instance, by a single OWC technology, a combination of OWC technologies, or by hybrid OWC/RF links. In order to establish last mile outdoor interconnection, a free-space optical (FSO) has to be investigated. In this thesis, the performance of all-optical multi-hop scenarios is analyzed under atmospheric conditions. However, nowadays, many end users spend much time in indoor environments where visible light communication (VLC) technology can provide better transmission parameters and, significantly, better coverage. An analytical description of bit error rate for relaying VLC schemes is derived and experimentally verified. Nonetheless, for the last mile, interconnection of a provider and end users (joint outdoor and indoor connection) can be advantageous when combining multiple technologies. Therefore, a hybrid FSO/VLC system is proposed and analyzed for the interconnection of the last mile and last meter bottleneck
    corecore