172 research outputs found

    The Logic of Random Pulses: Stochastic Computing.

    Full text link
    Recent developments in the field of electronics have produced nano-scale devices whose operation can only be described in probabilistic terms. In contrast with the conventional deterministic computing that has dominated the digital world for decades, we investigate a fundamentally different technique that is probabilistic by nature, namely, stochastic computing (SC). In SC, numbers are represented by bit-streams of 0's and 1's, in which the probability of seeing a 1 denotes the value of the number. The main benefit of SC is that complicated arithmetic computation can be performed by simple logic circuits. For example, a single (logic) AND gate performs multiplication. The dissertation begins with a comprehensive survey of SC and its applications. We highlight its main challenges, which include long computation time and low accuracy, as well as the lack of general design methods. We then address some of the more important challenges. We introduce a new SC design method, called STRAUSS, that generates efficient SC circuits for arbitrary target functions. We then address the problems arising from correlation among stochastic numbers (SNs). In particular, we show that, contrary to general belief, correlation can sometimes serve as a resource in SC design. We also show that unlike conventional circuits, SC circuits can tolerate high error rates and are hence useful in some new applications that involve nondeterministic behavior in the underlying circuitry. Finally, we show how SC's properties can be exploited in the design of an efficient vision chip that is suitable for retinal implants. In particular, we show that SC circuits can directly operate on signals with neural encoding, which eliminates the need for data conversion.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113561/1/alaghi_1.pd

    ๊ทผ์‚ฌ ์ปดํ“จํŒ…์„ ์ด์šฉํ•œ ํšŒ๋กœ ๋…ธํ™” ๋ณด์ƒ๊ณผ ์—๋„ˆ์ง€ ํšจ์œจ์ ์ธ ์‹ ๊ฒฝ๋ง ๊ตฌํ˜„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ์ดํ˜์žฌ.Approximate computing reduces the cost (energy and/or latency) of computations by relaxing the correctness (i.e., precision) of computations up to the level, which is dependent on types of applications. Moreover, it can be realized in various hierarchies of computing system design from circuit level to application level. This dissertation presents the methodologies applying approximate computing across such hierarchies; compensating aging-induced delay in logic circuit by dynamic computation approximation (Chapter 1), designing energy-efficient neural network by combining low-power and low-latency approximate neuron models (Chapter 2), and co-designing in-memory gradient descent module with neural processing unit so as to address a memory bottleneck incurred by memory I/O for high-precision data (Chapter 3). The first chapter of this dissertation presents a novel design methodology to turn the timing violation caused by aging into computation approximation error without the reliability guardband or increasing the supply voltage. It can be realized by accurately monitoring the critical path delay at run-time. The proposal is evaluated at two levels: RTL component level and system level. The experimental results at the RTL component level show a significant improvement in terms of (normalized) mean squared error caused by the timing violation and, at the system level, show that the proposed approach successfully transforms the aging-induced timing violation errors into much less harmful computation approximation errors, therefore it recovers image quality up to perceptually acceptable levels. It reduces the dynamic and static power consumption by 21.45% and 10.78%, respectively, with 0.8% area overhead compared to the conventional approach. The second chapter of this dissertation presents an energy-efficient neural network consisting of alternative neuron models; Stochastic-Computing (SC) and Spiking (SP) neuron models. SC has been adopted in various fields to improve the power efficiency of systems by performing arithmetic computations stochastically, which approximates binary computation in conventional computing systems. Moreover, a recent work showed that deep neural network (DNN) can be implemented in the manner of stochastic computing and it greatly reduces power consumption. However, Stochastic DNN (SC-DNN) suffers from problem of high latency as it processes only a bit per cycle. To address such problem, it is proposed to adopt Spiking DNN (SP-DNN) as an input interface for SC-DNN since SP effectively processes more bits per cycle than SC-DNN. Moreover, this chapter resolves the encoding mismatch problem, between two different neuron models, without hardware cost by compensating the encoding mismatch with synapse weight calibration. A resultant hybrid DNN (SPSC-DNN) consists of SP-DNN as bottom layers and SC-DNN as top layers. Exploiting the reduced latency from SP-DNN and low-power consumption from SC-DNN, the proposed SPSC-DNN achieves improved energy-efficiency with lower error-rate compared to SC-DNN and SP-DNN in same network configuration. The third chapter of this dissertation proposes GradPim architecture, which accelerates the parameter updates by in-memory processing which is codesigned with 8-bit floating-point training in Neural Processing Unit (NPU) for deep neural networks. By keeping the high precision processing algorithms in memory, such as the parameter update incorporating high-precision weights in its computation, the GradPim architecture can achieve high computational efficiency using 8-bit floating point in NPU and also gain power efficiency by eliminating massive high-precision data transfers between NPU and off-chip memory. A simple extension of DDR4 SDRAM utilizing bank-group parallelism makes the operation designs in processing-in-memory (PIM) module efficient in terms of hardware cost and performance. The experimental results show that the proposed architecture can improve the performance of the parameter update phase in the training by up to 40% and greatly reduce the memory bandwidth requirement while posing only a minimal amount of overhead to the protocol and the DRAM area.๊ทผ์‚ฌ ์ปดํ“จํŒ…์€ ์—ฐ์‚ฐ์˜ ์ •ํ™•๋„์˜ ์†์‹ค์„ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋ณ„ ์ ์ ˆํ•œ ์ˆ˜์ค€๊นŒ์ง€ ํ—ˆ์šฉํ•จ์œผ๋กœ์จ ์—ฐ์‚ฐ์— ํ•„์š”ํ•œ ๋น„์šฉ (์—๋„ˆ์ง€๋‚˜ ์ง€์—ฐ์‹œ๊ฐ„)์„ ์ค„์ธ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€, ๊ทผ์‚ฌ ์ปดํ“จํŒ…์€ ์ปดํ“จํŒ… ์‹œ์Šคํ…œ ์„ค๊ณ„์˜ ํšŒ๋กœ ๊ณ„์ธต๋ถ€ํ„ฐ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜ ๊ณ„์ธต๊นŒ์ง€ ๋‹ค์–‘ํ•œ ๊ณ„์ธต์— ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ทผ์‚ฌ ์ปดํ“จํŒ… ๋ฐฉ๋ฒ•๋ก ์„ ๋‹ค์–‘ํ•œ ์‹œ์Šคํ…œ ์„ค๊ณ„์˜ ๊ณ„์ธต์— ์ ์šฉํ•˜์—ฌ ์ „๋ ฅ๊ณผ ์—๋„ˆ์ง€ ์ธก๋ฉด์—์„œ ์ด๋“์„ ์–ป์„ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•๋“ค์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋Š”, ์—ฐ์‚ฐ ๊ทผ์‚ฌํ™” (computation Approximation)๋ฅผ ํ†ตํ•ด ํšŒ๋กœ์˜ ๋…ธํ™”๋กœ ์ธํ•ด ์ฆ๊ฐ€๋œ ์ง€์—ฐ์‹œ๊ฐ„์„ ์ถ”๊ฐ€์ ์ธ ์ „๋ ฅ์†Œ๋ชจ ์—†์ด ๋ณด์ƒํ•˜๋Š” ๋ฐฉ๋ฒ•๊ณผ (์ฑ•ํ„ฐ 1), ๊ทผ์‚ฌ ๋‰ด๋Ÿฐ๋ชจ๋ธ (approximate neuron model)์„ ์ด์šฉํ•ด ์—๋„ˆ์ง€ ํšจ์œจ์ด ๋†’์€ ์‹ ๊ฒฝ๋ง์„ ๊ตฌ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ• (์ฑ•ํ„ฐ 2), ๊ทธ๋ฆฌ๊ณ  ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ์œผ๋กœ ์ธํ•œ ๋ณ‘๋ชฉํ˜„์ƒ ๋ฌธ์ œ๋ฅผ ๋†’์€ ์ •ํ™•๋„ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ ์—ฐ์‚ฐ์„ ๋ฉ”๋ชจ๋ฆฌ ๋‚ด์—์„œ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ ์™„ํ™”์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ (์ฑ•ํ„ฐ3) ์ œ์•ˆํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ฑ•ํ„ฐ๋Š” ํšŒ๋กœ์˜ ๋…ธํ™”๋กœ ์ธํ•œ ์ง€์—ฐ์‹œ๊ฐ„์œ„๋ฐ˜์„ (timing violation) ์„ค๊ณ„๋งˆ์ง„์ด๋‚˜ (reliability guardband) ๊ณต๊ธ‰์ „๋ ฅ์˜ ์ฆ๊ฐ€ ์—†์ด ์—ฐ์‚ฐ์˜ค์ฐจ (computation approximation error)๋ฅผ ํ†ตํ•ด ๋ณด์ƒํ•˜๋Š” ์„ค๊ณ„๋ฐฉ๋ฒ•๋ก  (design methodology)๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ฃผ์š”๊ฒฝ๋กœ์˜ (critical path) ์ง€์—ฐ์‹œ๊ฐ„์„ ๋™์ž‘์‹œ๊ฐ„์— ์ •ํ™•ํ•˜๊ฒŒ ์ธก์ •ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์—ฌ๊ธฐ์„œ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•๋ก ์€ RTL component์™€ system ๋‹จ๊ณ„์—์„œ ํ‰๊ฐ€๋˜์—ˆ๋‹ค. RTL component ๋‹จ๊ณ„์˜ ์‹คํ—˜๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•œ ๋ฐฉ์‹์ด ํ‘œ์ค€ํ™”๋œ ํ‰๊ท ์ œ๊ณฑ์˜ค์ฐจ๋ฅผ (normalized mean squared error) ์ƒ๋‹นํžˆ ์ค„์˜€์Œ์„ ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  system ๋‹จ๊ณ„์—์„œ๋Š” ์ด๋ฏธ์ง€์ฒ˜๋ฆฌ ์‹œ์Šคํ…œ์—์„œ ์ด๋ฏธ์ง€์˜ ํ’ˆ์งˆ์ด ์ธ์ง€์ ์œผ๋กœ ์ถฉ๋ถ„ํžˆ ํšŒ๋ณต๋˜๋Š” ๊ฒƒ์„ ๋ณด์ž„์œผ๋กœ์จ ํšŒ๋กœ๋…ธํ™”๋กœ ์ธํ•ด ๋ฐœ์ƒํ•œ ์ง€์—ฐ์‹œ๊ฐ„์œ„๋ฐ˜ ์˜ค์ฐจ๊ฐ€ ์—๋Ÿฌ์˜ ํฌ๊ธฐ๊ฐ€ ์ž‘์€ ์—ฐ์‚ฐ์˜ค์ฐจ๋กœ ๋ณ€๊ฒฝ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธ ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ๋”ฐ๋ž์„ ๋•Œ 0.8%์˜ ๊ณต๊ฐ„์„ (area) ๋” ์‚ฌ์šฉํ•˜๋Š” ๋น„์šฉ์„ ์ง€๋ถˆํ•˜๊ณ  21.45%์˜ ๋™์ ์ „๋ ฅ์†Œ๋ชจ์™€ (dynamic power consumption) 10.78%์˜ ์ •์ ์ „๋ ฅ์†Œ๋ชจ์˜ (static power consumption) ๊ฐ์†Œ๋ฅผ ๋‹ฌ์„ฑํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์ฑ•ํ„ฐ๋Š” ๊ทผ์‚ฌ ๋‰ด๋Ÿฐ๋ชจ๋ธ์„ ํ™œ์šฉํ•˜๋Š” ๊ณ -์—๋„ˆ์ง€ํšจ์œจ์˜ ์‹ ๊ฒฝ๋ง์„ (neural network) ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ์‚ฌ์šฉํ•œ ๋‘ ๊ฐ€์ง€์˜ ๊ทผ์‚ฌ ๋‰ด๋Ÿฐ๋ชจ๋ธ์€ ํ™•๋ฅ ์ปดํ“จํŒ…๊ณผ (stochastic computing) ์ŠคํŒŒ์ดํ‚น๋‰ด๋Ÿฐ (spiking neuron) ์ด๋ก ๋“ค์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ชจ๋ธ๋ง๋˜์—ˆ๋‹ค. ํ™•๋ฅ ์ปดํ“จํŒ…์€ ์‚ฐ์ˆ ์—ฐ์‚ฐ๋“ค์„ ํ™•๋ฅ ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•จ์œผ๋กœ์จ ์ด์ง„์—ฐ์‚ฐ์„ ๋‚ฎ์€ ์ „๋ ฅ์†Œ๋ชจ๋กœ ์ˆ˜ํ–‰ํ•œ๋‹ค. ์ตœ๊ทผ์— ํ™•๋ฅ ์ปดํ“จํŒ… ๋‰ด๋Ÿฐ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ์‹ฌ์ธต ์‹ ๊ฒฝ๋ง (deep neural network)๋ฅผ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ํ™•๋ฅ ์ปดํ“จํŒ…์„ ๋‰ด๋Ÿฐ๋ชจ๋ธ๋ง์— ํ™œ์šฉํ•  ๊ฒฝ์šฐ ์‹ฌ์ธต์‹ ๊ฒฝ๋ง์ด ๋งค ํด๋ฝ์‚ฌ์ดํด๋งˆ๋‹ค (clock cycle) ํ•˜๋‚˜์˜ ๋น„ํŠธ๋งŒ์„ (bit) ์ฒ˜๋ฆฌํ•˜๋ฏ€๋กœ, ์ง€์—ฐ์‹œ๊ฐ„ ์ธก๋ฉด์—์„œ ๋งค์šฐ ๋‚˜์  ์ˆ˜ ๋ฐ–์— ์—†๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ŠคํŒŒ์ดํ‚น ๋‰ด๋Ÿฐ๋ชจ๋ธ๋กœ ๊ตฌ์„ฑ๋œ ์ŠคํŒŒ์ดํ‚น ์‹ฌ์ธต์‹ ๊ฒฝ๋ง์„ ํ™•๋ฅ ์ปดํ“จํŒ…์„ ํ™œ์šฉํ•œ ์‹ฌ์ธต์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ์™€ ๊ฒฐํ•ฉํ•˜์˜€๋‹ค. ์ŠคํŒŒ์ดํ‚น ๋‰ด๋Ÿฐ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ ๋งค ํด๋ฝ์‚ฌ์ดํด๋งˆ๋‹ค ์—ฌ๋Ÿฌ ๋น„ํŠธ๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์œผ๋ฏ€๋กœ ์‹ฌ์ธต์‹ ๊ฒฝ๋ง์˜ ์ž…๋ ฅ ์ธํ„ฐํŽ˜์ด์Šค๋กœ ์‚ฌ์šฉ๋  ๊ฒฝ์šฐ ์ง€์—ฐ์‹œ๊ฐ„์„ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ, ํ™•๋ฅ ์ปดํ“จํŒ… ๋‰ด๋Ÿฐ๋ชจ๋ธ๊ณผ ์ŠคํŒŒ์ดํ‚น ๋‰ด๋Ÿฐ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ ๋ถ€ํ˜ธํ™” (encoding) ๋ฐฉ์‹์ด ๋‹ค๋ฅธ ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ํ•ด๋‹น ๋ถ€ํ˜ธํ™” ๋ถˆ์ผ์น˜ ๋ฌธ์ œ๋ฅผ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ํ•™์Šตํ•  ๋•Œ ๊ณ ๋ คํ•จ์œผ๋กœ์จ, ํŒŒ๋ผ๋ฏธํ„ฐ๋“ค์˜ ๊ฐ’์ด ๋ถ€ํ˜ธํ™” ๋ถˆ์ผ์น˜๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์กฐ์ ˆ (calibration) ๋  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์—ฌ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ๋ถ„์„์˜ ๊ฒฐ๊ณผ๋กœ, ์•ž ์ชฝ์—๋Š” ์ŠคํŒŒ์ดํ‚น ์‹ฌ์ธต์‹ ๊ฒฝ๋ง์„ ๋ฐฐ์น˜ํ•˜๊ณ  ๋’ท ์ชฝ์• ๋Š” ํ™•๋ฅ ์ปดํ“จํŒ… ์‹ฌ์ธต์‹ ๊ฒฝ๋ง์„ ๋ฐฐ์น˜ํ•˜๋Š” ํ˜ผ์„ฑ์‹ ๊ฒฝ๋ง์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ํ˜ผ์„ฑ์‹ ๊ฒฝ๋ง์€ ์ŠคํŒŒ์ดํ‚น ์‹ฌ์ธต์‹ ๊ฒฝ๋ง์„ ํ†ตํ•ด ๋งค ํด๋ฝ์‚ฌ์ดํด๋งˆ๋‹ค ์ฒ˜๋ฆฌ๋˜๋Š” ๋น„ํŠธ ์–‘์˜ ์ฆ๊ฐ€๋กœ ์ธํ•œ ์ง€์—ฐ์‹œ๊ฐ„ ๊ฐ์†Œ ํšจ๊ณผ์™€ ํ™•๋ฅ ์ปดํ“จํŒ… ์‹ฌ์ธต์‹ ๊ฒฝ๋ง์˜ ์ €์ „๋ ฅ ์†Œ๋ชจ ํŠน์„ฑ์„ ๋ชจ๋‘ ํ™œ์šฉํ•จ์œผ๋กœ์จ ๊ฐ ์‹ฌ์ธต์‹ ๊ฒฝ๋ง์„ ๋”ฐ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋Œ€๋น„ ์šฐ์ˆ˜ํ•œ ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ์„ ๋น„์Šทํ•˜๊ฑฐ๋‚˜ ๋” ๋‚˜์€ ์ •ํ™•๋„ ๊ฒฐ๊ณผ๋ฅผ ๋‚ด๋ฉด์„œ ๋‹ฌ์„ฑํ•œ๋‹ค. ์„ธ ๋ฒˆ์งธ ์ฑ•ํ„ฐ๋Š” ์‹ฌ์ธต์‹ ๊ฒฝ๋ง์„ 8๋น„ํŠธ ๋ถ€๋™์†Œ์ˆซ์  ์—ฐ์‚ฐ์œผ๋กœ ํ•™์Šตํ•˜๋Š” ์‹ ๊ฒฝ๋ง์ฒ˜๋ฆฌ์œ ๋‹›์˜ (neural processing unit) ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐฑ์‹ ์„ (parameter update) ๋ฉ”๋ชจ๋ฆฌ-๋‚ด-์—ฐ์‚ฐ์œผ๋กœ (in-memory processing) ๊ฐ€์†ํ•˜๋Š” GradPIM ์•„ํ‚คํ…์ณ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. GradPIM์€ 8๋น„ํŠธ์˜ ๋‚ฎ์€ ์ •ํ™•๋„ ์—ฐ์‚ฐ์€ ์‹ ๊ฒฝ๋ง์ฒ˜๋ฆฌ์œ ๋‹›์— ๋‚จ๊ธฐ๊ณ , ๋†’์€ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง€๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜๋Š” ์—ฐ์‚ฐ์€ (ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐฑ์‹ ) ๋ฉ”๋ชจ๋ฆฌ ๋‚ด๋ถ€์— ๋‘ ์œผ๋กœ์จ ์‹ ๊ฒฝ๋ง์ฒ˜๋ฆฌ์œ ๋‹›๊ณผ ๋ฉ”๋ชจ๋ฆฌ๊ฐ„์˜ ๋ฐ์ดํ„ฐํ†ต์‹ ์˜ ์–‘์„ ์ค„์—ฌ, ๋†’์€ ์—ฐ์‚ฐํšจ์œจ๊ณผ ์ „๋ ฅํšจ์œจ์„ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ๋˜ํ•œ, GradPIM์€ bank-group ์ˆ˜์ค€์˜ ๋ณ‘๋ ฌํ™”๋ฅผ ์ด๋ฃจ์–ด ๋‚ด ๋†’์€ ๋‚ด๋ถ€ ๋Œ€์—ญํญ์„ ํ™œ์šฉํ•จ์œผ๋กœ์จ ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ์„ ํฌ๊ฒŒ ํ™•์žฅ์‹œํ‚ฌ ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๋‹ค. ๋˜ํ•œ ์ด๋Ÿฌํ•œ ๋ฉ”๋ชจ๋ฆฌ ๊ตฌ์กฐ์˜ ๋ณ€๊ฒฝ์ด ์ตœ์†Œํ™”๋˜์—ˆ๊ธฐ ๋•Œ๋ฌธ์— ์ถ”๊ฐ€์ ์ธ ํ•˜๋“œ์›จ์–ด ๋น„์šฉ๋„ ์ตœ์†Œํ™”๋˜์—ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด GradPIM์ด ์ตœ์†Œํ•œ์˜ DRAM ํ”„๋กœํ† ์ฝœ ๋ณ€ํ™”์™€ DRAM์นฉ ๋‚ด์˜ ๊ณต๊ฐ„์‚ฌ์šฉ์„ ํ†ตํ•ด ์‹ฌ์ธต์‹ ๊ฒฝ๋ง ํ•™์Šต๊ณผ์ • ์ค‘ ํŒŒ๋ผ๋ฏธํ„ฐ ๊ฐฑ์‹ ์— ํ•„์š”ํ•œ ์‹œ๊ฐ„์„ 40%๋งŒํผ ํ–ฅ์ƒ์‹œ์ผฐ์Œ์„ ๋ณด์˜€๋‹ค.Chapter I: Dynamic Computation Approximation for Aging Compensation 1 1.1 Introduction 1 1.1.1 Chip Reliability 1 1.1.2 Reliability Guardband 2 1.1.3 Approximate Computing in Logic Circuits 2 1.1.4 Computation approximation for Aging Compensation 3 1.1.5 Motivational Case Study 4 1.2 Previous Work 5 1.2.1 Aging-induced Delay 5 1.2.2 Delay-Configurable Circuits 6 1.3 Proposed System 8 1.3.1 Overview of the Proposed System 8 1.3.2 Proposed Adder 9 1.3.3 Proposed Multiplier 11 1.3.4 Proposed Monitoring Circuit 16 1.3.5 Aging Compensation Scheme 19 1.4 Design Methodology 20 1.5 Evaluation 24 1.5.1 Experimental setup 24 1.5.2 RTL component level Adder/Multiplier 27 1.5.3 RTL component level Monitoring circuit 30 1.5.4 System level 31 1.6 Summary 38 Chapter II: Energy-Efficient Neural Network by Combining Approximate Neuron Models 40 2.1 Introduction 40 2.1.1 Deep Neural Network (DNN) 40 2.1.2 Low-power designs for DNN 41 2.1.3 Stochastic-Computing Deep Neural Network 41 2.1.4 Spiking Deep Neural Network 43 2.2 Hybrid of Stochastic and Spiking DNNs 44 2.2.1 Stochastic-Computing vs Spiking Deep Neural Network 44 2.2.2 Combining Spiking Layers and Stochastic Layers 46 2.2.3 Encoding Mismatch 47 2.3 Evaluation 49 2.3.1 Latency and Test Error 49 2.3.2 Energy Efficiency 51 2.4 Summary 54 Chapter III: GradPIM: In-memory Gradient Descent in Mixed-Precision DNN Training 55 3.1 Introduction 55 3.1.1 Neural Processing Unit 55 3.1.2 Mixed-precision Training 56 3.1.3 Mixed-precision Training with In-memory Gradient Descent 57 3.1.4 DNN Parameter Update Algorithms 59 3.1.5 Modern DRAM Architecture 61 3.1.6 Motivation 63 3.2 Previous Work 65 3.2.1 Processing-In-Memory 65 3.2.2 Co-design Neural Processing Unit and Processing-In-Memory 66 3.2.3 Low-precision Computation in NPU 67 3.3 GradPIM 68 3.3.1 GradPIM Architecture 68 3.3.2 GradPIM Operations 69 3.3.3 Timing Considerations 70 3.3.4 Update Phase Procedure 73 3.3.5 Commanding GradPIM 75 3.4 NPU Co-design with GradPIM 76 3.4.1 NPU Architecture 76 3.4.2 Data Placement 79 3.5 Evaluation 82 3.5.1 Evaluation Methodology 82 3.5.2 Experimental Results 83 3.5.3 Sensitivity Analysis 88 3.5.4 Layer Characterizations 90 3.5.5 Distributed Data Parallelism 90 3.6 Summary 92 3.6.1 Discussion 92 Bibliography 113 ์š”์•ฝ 114Docto

    Removing constantโ€induced errors in stochastic circuits

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163790/1/cdt2bf00226.pd

    The hardware implementation of an artificial neural network using stochastic pulse rate encoding principles

    Get PDF
    In this thesis the development of a hardware artificial neuron device and artificial neural network using stochastic pulse rate encoding principles is considered. After a review of neural network architectures and algorithmic approaches suitable for hardware implementation, a critical review of hardware techniques which have been considered in analogue and digital systems is presented. New results are presented demonstrating the potential of two learning schemes which adapt by the use of a single reinforcement signal. The techniques for computation using stochastic pulse rate encoding are presented and extended with new novel circuits relevant to the hardware implementation of an artificial neural network. The generation of random numbers is the key to the encoding of data into the stochastic pulse rate domain. The formation of random numbers and multiple random bit sequences from a single PRBS generator have been investigated. Two techniques, Simulated Annealing and Genetic Algorithms, have been applied successfully to the problem of optimising the configuration of a PRBS random number generator for the formation of multiple random bit sequences and hence random numbers. A complete hardware design for an artificial neuron using stochastic pulse rate encoded signals has been described, designed, simulated, fabricated and tested before configuration of the device into a network to perform simple test problems. The implementation has shown that the processing elements of the artificial neuron are small and simple, but that there can be a significant overhead for the encoding of information into the stochastic pulse rate domain. The stochastic artificial neuron has the capability of on-line weight adaption. The implementation of reinforcement schemes using the stochastic neuron as a basic element are discussed

    Metal oxides of resistive memories investigated by electron and ion backscattering

    Get PDF
    The memristor is one of the most promising devices being studied for multiple uses in future electronic systems, with applications ranging from nonvolatile memories to artificial neural networks. Its working is based on the forming and rupturing of nano-scaled conductive filaments, which drastically alters the deviceโ€™s resistance. These filaments are formed by oxygen vacancy accumulation, hence a deep understanding of the self-diffusion of oxygen in these systems is necessary. Accurate measurements of oxygen self-diffusion on metal oxides was achieved with the development of a quantitative analysis of the energy spectrum of the backscattering of electrons. The novel technique called Electron Rutherford Backscattering Spectroscopy (ERBS) uses the scattering of high energy electrons ( 40 keV) to probe the sampleโ€™s near surface (10โ€“100 nm). Measurements of the high energy loss region โ€“ called Reflection High-Energy Electron Loss Spectroscopy (RHEELS) โ€“ also exhibit characteristics of the materialโ€™s electronic structure. A careful procedure was developed for the fitting of ERBS spectra, which was then applied on the analysis of multi-layered samples of Si3N4/TiO2, and measurements of the band gap of common oxides, such as SiO2, CaCO3 and Li2CO3. Monte Carlo simulations were employed to study the effects of multiple elastic scatterings in ERBS spectra, and a dielectric function description of inelastic scatterings extended the simulation to also consider the plasmon excitation peaks observed in RHEELS. These analysis tools were integrated into a package named PowerInteraction. With its use, a series of measurements of oxygen self-diffusion in TiO2 were conducted. The samples were composed of two sputtered deposited TiO2 layers, one of which was enriched with the 18 mass oxygen isotope. After thermal annealing, diffusion profiles were obtained by tracking the relative concentration of oxygen isotopes in both films. From the logarithmic temperature dependence of the diffusion coefficients, an activation energy of 1.05 eV for oxygen self-diffusion in TiO2 was obtained. Common ion beam analysis, such as RBS and NRA/NRP (Nuclear Reaction Analysis/Profiling), were also used to provide complementary information.O memristor รฉ um dos dispositivos mais promissores sendo estudados para mรบltiplos usos em sistemas eletrรดnicos, com aplicaรงรตes desde memรณrias nรฃo volรกteis a redes neurais artificiais. Seu funcionamento รฉ baseado na formaรงรฃo e ruptura de filamentos condutores nanomรฉtricos, o que altera drasticamente a resistรชncia do dispositivo. Estes filamentos sรฃo formados pela acumulaรงรฃo de vacรขncias de oxigรชnio, portanto um profundo entendimento da autodifusรฃo de oxigรชnio nestes sistemas รฉ necessรกrio. Medidas acuradas da difusรฃo em รณxidos metรกlicos foi obtida com o desenvolvimento de uma anรกlise quantitativa do espectro em energia de elรฉtrons retroespalhados. A inovadora tรฉcnica de RBS de elรฉtrons (ERBS) utiliza elรฉtrons de alta energia ( 40 keV) para investigar a regiรฃo prรณxima a superfรญcie (10โ€“100 nm). Medidas da regiรฃo de alta perda de energia โ€“ chamada de Spectroscopia de Perda de Alta-Energia de Elรฉtrons Refletidos (RHEELS) โ€“ tambรฉm exibe caracterรญsticas da estrutura eletrรดnica dos materiais. Um procedimento cuidadoso para o ajuste de espectros de ERBS foi desenvolvido, e entรฃo aplicado na anรกlise de amostras multi camada de Si3N4/TiO2, e medidas de band gap de alguns รณxidos, como SiO2, CaCO3 e Li2CO3. Simulaรงรตes de Monte Carlo foram empregadas no estudo dos efeitos de espalhamento mรบltiplo nos espectros de ERBS, e uma descriรงรฃo dielรฉtrica dos espalhamentos inelรกsticos extendeu as simulaรงรฃo para tambรฉm considerarem os picos de exitaรงรฃo plasmรดnica observados em RHEELS. Estas ferramentas de anรกlise foram integradas em um pacote chamado PowerInteraction. Com o uso deste, uma sรฉrie de medidas de autodifusรฃo de oxigรชnio em TiO2 foram conduzidas. As amostras eram compostas por dois filmes de TiO2 depositados por sputtering, um dos quais enriquecido com isรณtopo 18 de oxigรชnio. Apรณs tratamentos tรฉrmicos, perfis de difusรฃo foram obtidos pelo rastreio das concentraรงรตes relativas dos isรณtopos de oxigรชnio nos dois filmes. Do comportamento logarรญtmico dos coeficientes de difusรฃo em relaรงรฃo ร  temperatura, uma energia de ativaรงรฃo de 1.05 eV para a autodifusรฃo de oxigรชnio em TiO2 foi obtida. Anรกlises por feixes de รญons, como RBS e NRA/NRP (Anรกlise/Perfilometria por Reaรงรฃo Nuclear), tambรฉm forneceram informaรงรตes complementares

    MOCAST 2021

    Get PDF
    The 10th International Conference on Modern Circuit and System Technologies on Electronics and Communications (MOCAST 2021) will take place in Thessaloniki, Greece, from July 5th to July 7th, 2021. The MOCAST technical program includes all aspects of circuit and system technologies, from modeling to design, verification, implementation, and application. This Special Issue presents extended versions of top-ranking papers in the conference. The topics of MOCAST include:Analog/RF and mixed signal circuits;Digital circuits and systems design;Nonlinear circuits and systems;Device and circuit modeling;High-performance embedded systems;Systems and applications;Sensors and systems;Machine learning and AI applications;Communication; Network systems;Power management;Imagers, MEMS, medical, and displays;Radiation front ends (nuclear and space application);Education in circuits, systems, and communications

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc
    • โ€ฆ
    corecore