698 research outputs found

    PS-Sim: A Framework for Scalable Simulation of Participatory Sensing Data

    Full text link
    Emergence of smartphone and the participatory sensing (PS) paradigm have paved the way for a new variant of pervasive computing. In PS, human user performs sensing tasks and generates notifications, typically in lieu of incentives. These notifications are real-time, large-volume, and multi-modal, which are eventually fused by the PS platform to generate a summary. One major limitation with PS is the sparsity of notifications owing to lack of active participation, thus inhibiting large scale real-life experiments for the research community. On the flip side, research community always needs ground truth to validate the efficacy of the proposed models and algorithms. Most of the PS applications involve human mobility and report generation following sensing of any event of interest in the adjacent environment. This work is an attempt to study and empirically model human participation behavior and event occurrence distributions through development of a location-sensitive data simulation framework, called PS-Sim. From extensive experiments it has been observed that the synthetic data generated by PS-Sim replicates real participation and event occurrence behaviors in PS applications, which may be considered for validation purpose in absence of the groundtruth. As a proof-of-concept, we have used real-life dataset from a vehicular traffic management application to train the models in PS-Sim and cross-validated the simulated data with other parts of the same dataset.Comment: Published and Appeared in Proceedings of IEEE International Conference on Smart Computing (SMARTCOMP-2018

    Mechanisms for improving information quality in smartphone crowdsensing systems

    Get PDF
    Given its potential for a large variety of real-life applications, smartphone crowdsensing has recently gained tremendous attention from the research community. Smartphone crowdsensing is a paradigm that allows ordinary citizens to participate in large-scale sensing surveys by using user-friendly applications installed in their smartphones. In this way, fine-grained sensing information is obtained from smartphone users without employing fixed and expensive infrastructure, and with negligible maintenance costs. Existing smartphone sensing systems depend completely on the participants\u27 willingness to submit up-to-date and accurate information regarding the events being monitored. Therefore, it becomes paramount to scalably and effectively determine, enforce, and optimize the information quality of the sensing reports submitted by the participants. To this end, mechanisms to improve information quality in smartphone crowdsensing systems were designed in this work. Firstly, the FIRST framework is presented, which is a reputation-based mechanism that leverages the concept of mobile trusted participants to determine and improve the information quality of collected data. Secondly, it is mathematically modeled and studied the problem of maximizing the likelihood of successful execution of sensing tasks when participants having uncertain mobility execute sensing tasks. Two incentive mechanisms based on game and auction theory are then proposed to efficiently and scalably solve such problem. Experimental results demonstrate that the mechanisms developed in this thesis outperform existing state of the art in improving information quality in smartphone crowdsensing systems --Abstract, page iii

    Behavior life style analysis for mobile sensory data in cloud computing through MapReduce

    Get PDF
    Cloud computing has revolutionized healthcare in today's world as it can be seamlessly integrated into a mobile application and sensor devices. The sensory data is then transferred from these devices to the public and private clouds. In this paper, a hybrid and distributed environment is built which is capable of collecting data from the mobile phone application and store it in the cloud. We developed an activity recognition application and transfer the data to the cloud for further processing. Big data technology Hadoop MapReduce is employed to analyze the data and create user timeline of user's activities. These activities are visualized to find useful health analytics and trends. In this paper a big data solution is proposed to analyze the sensory data and give insights into user behavior and lifestyle trends

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    HIGH PERFORMANCE DECENTRALISED COMMUNITY DETECTION ALGORITHMS FOR BIG DATA FROM SMART COMMUNICATION APPLICATIONS

    Get PDF
    Many systems in the world can be represented as models of complex networks and subsequently be analysed fruitfully. One fundamental property of the real-world networks is that they usually exhibit inhomogeneity in which the network tends to organise according to an underlying modular structure, commonly referred to as community structure or clustering. Analysing such communities in large networks can help people better understand the structural makeup of the networks. For example, it can be used in mobile ad-hoc and sensor networks to improve the energy consumption and communication tasks. Thus, community detection in networks has become an important research area within many application fields such as computer science, physical sciences, mathematics and biology. Driven by the recent emergence of big data, clustering of real-world networks using traditional methods and algorithms is almost impossible to be processed in a single machine. The existing methods are limited by their computational requirements and most of them cannot be directly parallelised. Furthermore, in many cases the data set is very big and does not fit into the main memory of a single machine, therefore needs to be distributed among several machines. The main topic of this thesis is about network community detection within these big data networks. More specifically, in this thesis, a novel approach, namely Decentralized Iterative Community Clustering Approach (DICCA) for clustering large and undirected networks is introduced. An important property of this approach is its ability to cluster the entire network without the global knowledge of the network topology. Moreover, an extension of the DICCA called Parallel Decentralized Iterative Community Clustering approach (PDICCA) is proposed for efficiently processing data distributed across several machines. PDICCA is based on MapReduce computing platform to work efficiently in distributed and parallel fashion. In addition, the real-world networks are usually noisy and imperfect with missing and false edges. These imperfections are often difficult to eliminate and highly affect the quality and accuracy of conventional methods used to find the community structure in the network. However, in real-world networks, node attribute information is also available in addition to topology information. Considering more than one source of information for community detection could produce meaningful clusters and improve the robustness of the network. Therefore, a pre-processing approach that considers attribute information, shared neighbours and connectivity information aspects of the network for community detection is presented in this thesis as part of my research. Finally, a set of real-world mobile phone usage data obtained from Cambridge Laboratories (Device Analyzer) has been analysed as an exploratory step for viability to apply the algorithms developed in this thesis. All the proposed approaches have been evaluated and verified for feasibility using real-world large data set. The evaluation results of these experimentations prove very promising for the type of large data networks considered

    Random Access in Nondelimited Variable-length Record Collections for Parallel Reading with Hadoop

    Get PDF
    The industry standard Packet CAPture (PCAP) format for storing network packet traces is normally only readable in serial due to its lack of delimiters, indexing, or blocking. This presents a challenge for parallel analysis of large networks, where packet traces can be many gigabytes in size. In this work we present RAPCAP, a novel method for random access into variable-length record collections like PCAP by identifying a record boundary within a small number of bytes of the access point. Unlike related heuristic methods that can limit scalability with a nonzero probability of error, the new method offers a correctness guarantee with a well formed file and does not rely on prior knowledge of the contents. We include a practical implementation of the algorithm with an extension to the Hadoop framework, and a performance comparison to serial ingestion. Finally, we present a number of similar storage types that could utilize a modified version of RAPCAP for random access

    SAMI: Service-Based Arbitrated Multi-Tier Infrastructure for Mobile Cloud Computing

    Get PDF
    Mobile Cloud Computing (MCC) is the state-ofthe- art mobile computing technology aims to alleviate resource poverty of mobile devices. Recently, several approaches and techniques have been proposed to augment mobile devices by leveraging cloud computing. However, long-WAN latency and trust are still two major issues in MCC that hinder its vision. In this paper, we analyze MCC and discuss its issues. We leverage Service Oriented Architecture (SOA) to propose an arbitrated multi-tier infrastructure model named SAMI for MCC. Our architecture consists of three major layers, namely SOA, arbitrator, and infrastructure. The main strength of this architecture is in its multi-tier infrastructure layer which leverages infrastructures from three main sources of Clouds, Mobile Network Operators (MNOs), and MNOs' authorized dealers. On top of the infrastructure layer, an arbitrator layer is designed to classify Services and allocate them the suitable resources based on several metrics such as resource requirement, latency and security. Utilizing SAMI facilitate development and deployment of service-based platform-neutral mobile applications.Comment: 6 full pages, accepted for publication in IEEE MobiCC'12 conference, MobiCC 2012:IEEE Workshop on Mobile Cloud Computing, Beijing, Chin

    Game Theoretic Approaches to Massive Data Processing in Wireless Networks

    Full text link
    Wireless communication networks are becoming highly virtualized with two-layer hierarchies, in which controllers at the upper layer with tasks to achieve can ask a large number of agents at the lower layer to help realize computation, storage, and transmission functions. Through offloading data processing to the agents, the controllers can accomplish otherwise prohibitive big data processing. Incentive mechanisms are needed for the agents to perform the controllers' tasks in order to satisfy the corresponding objectives of controllers and agents. In this article, a hierarchical game framework with fast convergence and scalability is proposed to meet the demand for real-time processing for such situations. Possible future research directions in this emerging area are also discussed
    corecore