198 research outputs found

    Cooperative Interactive Distributed Guidance on Mobile Devices

    Get PDF
    Mobiles device are quickly becoming an indispensable part of our society. Equipped with numerous communication capabilities, they are increasingly being examined as potential tools for civilian and military usage to aide in distributed remote collaboration for dynamic decision making and physical task completion. With an ever growing mobile workforce, the need for remote assistance in aiding field workers who are confronted with situations outside their expertise certainly increases. Enhanced capabilities in using mobile devices could significantly improve numerous components of a task\u27s completion (i.e. accuracy, timing, etc.). This dissertation considers the design of mobile implementation of technology and communication capabilities to support interactive collaboration between distributed team members. Specifically, this body of research seeks to explore and understand how various multimodal remote assistances affect both the human user\u27s performance and the mobile device\u27s effectiveness when used during cooperative tasks. Additionally, power effects are additionally studied to assess the energy demands on a mobile device supporting multimodal communication. In a series of applied experiments and demonstrations, the effectiveness of a mobile device facilitating multimodal collaboration is analyzed through both empirical data collection and subjective exploration. The utility of the mobile interactive system and its configurations are examined to assess the impact on distributed task performance and collaborative dialogue between pairs. The dissertation formulates and defends an argument that multimodal communication capabilities should be incorporated into mobile communication channels to provide collaborating partners salient perspectives with a goal of reaching a mutual understanding of task procedures. The body of research discusses the findings of this investigation and highlight these findings they may influence future mobile research seeking to enhance interactive distributed guidance

    Exploring Robot Teleoperation in Virtual Reality

    Get PDF
    This thesis presents research on VR-based robot teleoperation with a focus on remote environment visualisation in virtual reality, the effects of remote environment reconstruction scale in virtual reality on the human-operator's ability to control the robot and human-operator's visual attention patterns when teleoperating a robot from virtual reality. A VR-based robot teleoperation framework was developed, it is compatible with various robotic systems and cameras, allowing for teleoperation and supervised control with any ROS-compatible robot and visualisation of the environment through any ROS-compatible RGB and RGBD cameras. The framework includes mapping, segmentation, tactile exploration, and non-physically demanding VR interface navigation and controls through any Unity-compatible VR headset and controllers or haptic devices. Point clouds are a common way to visualise remote environments in 3D, but they often have distortions and occlusions, making it difficult to accurately represent objects' textures. This can lead to poor decision-making during teleoperation if objects are inaccurately represented in the VR reconstruction. A study using an end-effector-mounted RGBD camera with OctoMap mapping of the remote environment was conducted to explore the remote environment with fewer point cloud distortions and occlusions while using a relatively small bandwidth. Additionally, a tactile exploration study proposed a novel method for visually presenting information about objects' materials in the VR interface, to improve the operator's decision-making and address the challenges of point cloud visualisation. Two studies have been conducted to understand the effect of virtual world dynamic scaling on teleoperation flow. The first study investigated the use of rate mode control with constant and variable mapping of the operator's joystick position to the speed (rate) of the robot's end-effector, depending on the virtual world scale. The results showed that variable mapping allowed participants to teleoperate the robot more effectively but at the cost of increased perceived workload. The second study compared how operators used a virtual world scale in supervised control, comparing the virtual world scale of participants at the beginning and end of a 3-day experiment. The results showed that as operators got better at the task they as a group used a different virtual world scale, and participants' prior video gaming experience also affected the virtual world scale chosen by operators. Similarly, the human-operator's visual attention study has investigated how their visual attention changes as they become better at teleoperating a robot using the framework. The results revealed the most important objects in the VR reconstructed remote environment as indicated by operators' visual attention patterns as well as their visual priorities shifts as they got better at teleoperating the robot. The study also demonstrated that operators’ prior video gaming experience affects their ability to teleoperate the robot and their visual attention behaviours

    Towards System Agnostic Calibration of Optical See-Through Head-Mounted Displays for Augmented Reality

    Get PDF
    This dissertation examines the developments and progress of spatial calibration procedures for Optical See-Through (OST) Head-Mounted Display (HMD) devices for visual Augmented Reality (AR) applications. Rapid developments in commercial AR systems have created an explosion of OST device options for not only research and industrial purposes, but also the consumer market as well. This expansion in hardware availability is equally matched by a need for intuitive standardized calibration procedures that are not only easily completed by novice users, but which are also readily applicable across the largest range of hardware options. This demand for robust uniform calibration schemes is the driving motive behind the original contributions offered within this work. A review of prior surveys and canonical description for AR and OST display developments is provided before narrowing the contextual scope to the research questions evolving within the calibration domain. Both established and state of the art calibration techniques and their general implementations are explored, along with prior user study assessments and the prevailing evaluation metrics and practices employed within. The original contributions begin with a user study evaluation comparing and contrasting the accuracy and precision of an established manual calibration method against a state of the art semi-automatic technique. This is the first formal evaluation of any non-manual approach and provides insight into the current usability limitations of present techniques and the complexities of next generation methods yet to be solved. The second study investigates the viability of a user-centric approach to OST HMD calibration through novel adaptation of manual calibration to consumer level hardware. Additional contributions describe the development of a complete demonstration application incorporating user-centric methods, a novel strategy for visualizing both calibration results and registration error from the user’s perspective, as well as a robust intuitive presentation style for binocular manual calibration. The final study provides further investigation into the accuracy differences observed between user-centric and environment-centric methodologies. The dissertation concludes with a summarization of the contribution outcomes and their impact on existing AR systems and research endeavors, as well as a short look ahead into future extensions and paths that continued calibration research should explore

    Novel haptic interface For viewing 3D images

    Get PDF
    In recent years there has been an explosion of devices and systems capable of displaying stereoscopic 3D images. While these systems provide an improved experience over traditional bidimensional displays they often fall short on user immersion. Usually these systems only improve depth perception by relying on the stereopsis phenomenon. We propose a system that improves the user experience and immersion by having a position dependent rendering of the scene and the ability to touch the scene. This system uses depth maps to represent the geometry of the scene. Depth maps can be easily obtained on the rendering process or can be derived from the binocular-stereo images by calculating their horizontal disparity. This geometry is then used as an input to be rendered in a 3D display, do the haptic rendering calculations and have a position depending render of the scene. The author presents two main contributions. First, since the haptic devices have a finite work space and limited resolution, we used what we call detail mapping algorithms. These algorithms compress geometry information contained in a depth map, by reducing the contrast among pixels, in such a way that it can be rendered into a limited resolution display medium without losing any detail. Second, the unique combination of a depth camera as a motion capturing system, a 3D display and haptic device to enhance user experience. While developing this system we put special attention on the cost and availability of the hardware. We decided to use only off-the-shelf, mass consumer oriented hardware so our experiments can be easily implemented and replicated. As an additional benefit the total cost of the hardware did not exceed the one thousand dollars mark making it affordable for many individuals and institutions

    Understanding Visual Feedback in Large-Display Touchless Interactions: An Exploratory Study

    Get PDF
    Touchless interactions synthesize input and output from physically disconnected motor and display spaces without any haptic feedback. In the absence of any haptic feedback, touchless interactions primarily rely on visual cues, but properties of visual feedback remain unexplored. This paper systematically investigates how large-display touchless interactions are affected by (1) types of visual feedback—discrete, partial, and continuous; (2) alternative forms of touchless cursors; (3) approaches to visualize target-selection; and (4) persistent visual cues to support out-of-range and drag-and-drop gestures. Results suggest that continuous was more effective than partial visual feedback; users disliked opaque cursors, and efficiency did not increase when cursors were larger than display artifacts’ size. Semantic visual feedback located at the display border improved users’ efficiency to return within the display range; however, the path of movement echoed in drag-and-drop operations decreased efficiency. Our findings contribute key ingredients to design suitable visual feedback for large-display touchless environments.This work was partially supported by an IUPUI Research Support Funds Grant (RSFG)

    Exploring Robot Teleoperation in Virtual Reality

    Get PDF
    This thesis presents research on VR-based robot teleoperation with a focus on remote environment visualisation in virtual reality, the effects of remote environment reconstruction scale in virtual reality on the human-operator's ability to control the robot and human-operator's visual attention patterns when teleoperating a robot from virtual reality. A VR-based robot teleoperation framework was developed, it is compatible with various robotic systems and cameras, allowing for teleoperation and supervised control with any ROS-compatible robot and visualisation of the environment through any ROS-compatible RGB and RGBD cameras. The framework includes mapping, segmentation, tactile exploration, and non-physically demanding VR interface navigation and controls through any Unity-compatible VR headset and controllers or haptic devices. Point clouds are a common way to visualise remote environments in 3D, but they often have distortions and occlusions, making it difficult to accurately represent objects' textures. This can lead to poor decision-making during teleoperation if objects are inaccurately represented in the VR reconstruction. A study using an end-effector-mounted RGBD camera with OctoMap mapping of the remote environment was conducted to explore the remote environment with fewer point cloud distortions and occlusions while using a relatively small bandwidth. Additionally, a tactile exploration study proposed a novel method for visually presenting information about objects' materials in the VR interface, to improve the operator's decision-making and address the challenges of point cloud visualisation. Two studies have been conducted to understand the effect of virtual world dynamic scaling on teleoperation flow. The first study investigated the use of rate mode control with constant and variable mapping of the operator's joystick position to the speed (rate) of the robot's end-effector, depending on the virtual world scale. The results showed that variable mapping allowed participants to teleoperate the robot more effectively but at the cost of increased perceived workload. The second study compared how operators used a virtual world scale in supervised control, comparing the virtual world scale of participants at the beginning and end of a 3-day experiment. The results showed that as operators got better at the task they as a group used a different virtual world scale, and participants' prior video gaming experience also affected the virtual world scale chosen by operators. Similarly, the human-operator's visual attention study has investigated how their visual attention changes as they become better at teleoperating a robot using the framework. The results revealed the most important objects in the VR reconstructed remote environment as indicated by operators' visual attention patterns as well as their visual priorities shifts as they got better at teleoperating the robot. The study also demonstrated that operators’ prior video gaming experience affects their ability to teleoperate the robot and their visual attention behaviours

    XR-RF Imaging Enabled by Software-Defined Metasurfaces and Machine Learning: Foundational Vision, Technologies and Challenges

    Full text link
    We present a new approach to Extended Reality (XR), denoted as iCOPYWAVES, which seeks to offer naturally low-latency operation and cost-effectiveness, overcoming the critical scalability issues faced by existing solutions. iCOPYWAVES is enabled by emerging PWEs, a recently proposed technology in wireless communications. Empowered by intelligent (meta)surfaces, PWEs transform the wave propagation phenomenon into a software-defined process. We leverage PWEs to i) create, and then ii) selectively copy the scattered RF wavefront of an object from one location in space to another, where a machine learning module, accelerated by FPGAs, translates it to visual input for an XR headset using PWEdriven, RF imaging principles (XR-RF). This makes for an XR system whose operation is bounded in the physical layer and, hence, has the prospects for minimal end-to-end latency. Over large distances, RF-to-fiber/fiber-to-RF is employed to provide intermediate connectivity. The paper provides a tutorial on the iCOPYWAVES system architecture and workflow. A proof-of-concept implementation via simulations is provided, demonstrating the reconstruction of challenging objects in iCOPYWAVES produced computer graphics

    Practical, appropriate, empirically-validated guidelines for designing educational games

    Get PDF
    There has recently been a great deal of interest in the potential of computer games to function as innovative educational tools. However, there is very little evidence of games fulfilling that potential. Indeed, the process of merging the disparate goals of education and games design appears problematic, and there are currently no practical guidelines for how to do so in a coherent manner. In this paper, we describe the successful, empirically validated teaching methods developed by behavioural psychologists and point out how they are uniquely suited to take advantage of the benefits that games offer to education. We conclude by proposing some practical steps for designing educational games, based on the techniques of Applied Behaviour Analysis. It is intended that this paper can both focus educational games designers on the features of games that are genuinely useful for education, and also introduce a successful form of teaching that this audience may not yet be familiar with

    Understanding interaction mechanics in touchless target selection

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)We use gestures frequently in daily life—to interact with people, pets, or objects. But interacting with computers using mid-air gestures continues to challenge the design of touchless systems. Traditional approaches to touchless interaction focus on exploring gesture inputs and evaluating user interfaces. I shift the focus from gesture elicitation and interface evaluation to touchless interaction mechanics. I argue for a novel approach to generate design guidelines for touchless systems: to use fundamental interaction principles, instead of a reactive adaptation to the sensing technology. In five sets of experiments, I explore visual and pseudo-haptic feedback, motor intuitiveness, handedness, and perceptual Gestalt effects. Particularly, I study the interaction mechanics in touchless target selection. To that end, I introduce two novel interaction techniques: touchless circular menus that allow command selection using directional strokes and interface topographies that use pseudo-haptic feedback to guide steering–targeting tasks. Results illuminate different facets of touchless interaction mechanics. For example, motor-intuitive touchless interactions explain how our sensorimotor abilities inform touchless interface affordances: we often make a holistic oblique gesture instead of several orthogonal hand gestures while reaching toward a distant display. Following the Gestalt theory of visual perception, we found similarity between user interface (UI) components decreased user accuracy while good continuity made users faster. Other findings include hemispheric asymmetry affecting transfer of training between dominant and nondominant hands and pseudo-haptic feedback improving touchless accuracy. The results of this dissertation contribute design guidelines for future touchless systems. Practical applications of this work include the use of touchless interaction techniques in various domains, such as entertainment, consumer appliances, surgery, patient-centric health settings, smart cities, interactive visualization, and collaboration
    • …
    corecore