625 research outputs found

    EUROPEAN CONFERENCE ON QUEUEING THEORY 2016

    Get PDF
    International audienceThis booklet contains the proceedings of the second European Conference in Queueing Theory (ECQT) that was held from the 18th to the 20th of July 2016 at the engineering school ENSEEIHT, Toulouse, France. ECQT is a biannual event where scientists and technicians in queueing theory and related areas get together to promote research, encourage interaction and exchange ideas. The spirit of the conference is to be a queueing event organized from within Europe, but open to participants from all over the world. The technical program of the 2016 edition consisted of 112 presentations organized in 29 sessions covering all trends in queueing theory, including the development of the theory, methodology advances, computational aspects and applications. Another exciting feature of ECQT2016 was the institution of the TakĂĄcs Award for outstanding PhD thesis on "Queueing Theory and its Applications"

    Performance analysis of networks on chips

    Get PDF
    Modules on a chip (such as processors and memories) are traditionally connected through a single link, called a bus. As chips become more complex and the number of modules on a chip increases, this connection method becomes inefficient because the bus can only be used by one module at a time. Networks on chips are an emerging technology for the connection of on-chip modules. In networks on chips, switches are used to transmit data from one module to another, which entails that multiple links can be used simultaneously so that communication is more efficient. Switches consist of a number of input ports to which data arrives and output ports from which data leaves. If data at multiple input ports has to be transmitted to the same output port, only one input port may actually transmit its data, which may lead to congestion. Queueing theory deals with the analysis of congestion phenomena caused by competition for service facilities with scarce resources. Such phenomena occur, for example, in traffic intersections, manufacturing systems, and communication networks like networks on chips. These congestion phenomena are typically analysed using stochastic models, which capture the uncertain and unpredictable nature of processes leading to congestion (such as irregular car arrivals to a traffic intersection). Stochastic models are useful tools for the analysis of networks on chips as well, due to the complexity of data traffic on these networks. In this thesis, we therefore study queueing models aimed at networks on chips. The thesis is centred around two key models: A model of a switch in isolation, the so-called single-switch model, and a model of a network of switches where all traffic has the same destination, the so-called network of polling stations. For both models we are interested in the throughput (the amount of data transmitted per time unit) and the mean delay (the time it takes data to travel across the network). Single-switch models are often studied under the assumption that the number of ports tends to infinity and that traffic is uniform (i.e., on average equally many packets arrive to all buffers, and all possible destinations are equally likely). In networks on chips, however, the number of buffers is typically small. We introduce a new approximation specifically aimed at small switches with (memoryless) Bernoulli arrivals. We show that, for such switches, this approximation is more accurate than currently known approximations. As traffic in networks on chips is usually non-uniform, we also extend our approximation to non-uniform switches. The key difference between uniform and nonuniform switches is that in non-uniform switches, all queues have a different maximum throughput. We obtain a very accurate approximation of this throughput, which allows us to extend the mean delay approximation. The extended approximation is derived for Bernoulli arrivals and correlated arrival processes. Its accuracy is verified through a comparison with simulation results. The second key model is that of concentrating tree networks of polling stations (polling stations are essentially switches where all traffic has the same output port as destination). Single polling stations have been studied extensively in literature, but only few attempts have been made to analyse networks of polling stations. We establish a reduction theorem that states that networks of polling stations can be reduced to single polling stations while preserving some information on mean waiting times. This reduction theorem holds under the assumption that the last node of the network uses a so-called HoL-based service discipline, which means that the choice to transmit data from a certain buffer may only depend on which buffers are empty, but not on the amount of data in the buffers. The reduction theorem is a key tool for the analysis of networks of polling stations. In addition to this, mean waiting times in single polling stations have to be calculated, either exactly or approximately. To this end, known results can be used, but we also devise a new single-station approximation that can be used for a large subclass of HoL-based service disciplines. Finally, networks on chips typically implement flow control, which is a mechanism that limits the amount of data in the network from one source. We analyse the division of throughput over several sources in a network of polling stations with flow control. Our results indicate that the throughput in such a network is determined by an interaction between buffer sizes, flow control limits, and service disciplines. This interaction is studied in more detail by means of a numerical analysis

    3G Wideband CDMA : packet-based optimisation for high data-rate downlink transmission

    No full text
    A third generation (3G) of mobile communication systems, based on Wideband CDMA, are intended to offer high-speed packet-based services. Network operators wish to maximise the throughput in the downlink of3G systems, which requires efficient allocation ofresources. This thesis considers the problem ofmaximising throughput in an interference dominated channel. Cooperative broadcasting is a theoretical technique to mitigate this problem. Its implementation in practical systems requires efficient resource allocati.on to maximise the thr(oughput whilst meeting system and user-imposed constramts. A resource allocation approach is presented for implementing cooperative broadcasting. Users are paired and a teclmique for allocating resources between the pair is developed. Then, a method for pairing the users is considered. Simulation results are presented, which show a throughput improvement over existing resource allocation approaches. The problem ofcontrolling the distribution ofrandomly arriving data to meet the resource allocation specifications is examined. A single-threshold buffer is proposed, which requires fewer calculations than an existing double-threshold buffer. Simulation results are presented which show a throughput improvement may be realised, greater than that which would achievable using other rate control schemes. Cooperative broadcasting may lead to transmissions to some users being allocated low power. When full channel infonnation is available at the transmitter, a water filling solution may be used to maximise capacity. However, when combined with buffer management, erasure may result. This erasure may be overcome using an erasure protection code. Such a code is examined. When combined with Turbo coding, ajoint detector may be used for providing error and erasure protection. Analysis ofthis detector shows a lower limit on the error rate, dependent on the probability of erasure. Simulation results show that using this approach the error rate is significantly improved. This code can then be used to increase capacity, whilst achieving low error rates.Imperial Users onl

    Inventory control in multi-item production systems

    Get PDF
    This thesis focusses on the analysis and construction of control policies in multiitem production systems. In such systems, multiple items can be made to stock, but they have to share the finite capacity of a single machine. This machine can only produce one unit at a time and if it is set-up for one item, a switch-over or set-up time is needed to start the production of another item. Customers arrive to the system according to (compound) Poisson processes and if they see no stock upon arrival, they are either considered as a lost sale or backlogged. In this thesis, we look at production systems with backlog and production systems with lost sales. In production systems with lost sales, all arriving customers are considered lost if no stock is available and penalty costs are paid per lost customer. In production systems with backlog, arriving customers form a queue if they see no stock and backlogging costs are paid for every backlogged customer per time unit. These production systems find many applications in industry, for instance glass and paper production or bulk production of beers, see Anupindi and Tayur [2]. The objective for the production manager is to minimize the sum of the holding and penalty or backlogging costs. At each decision moment, the manager has to decide whether to switch to another product type, to produce another unit of the type that is set-up or to idle the machine. In order to minimize the total costs, a balance must be found between a fast switching scheme that is able to react to sudden changes in demand and a production plan with a little loss of capacity. Unfortunately, a fast switching scheme results in a loss of capacity, because switching from one product type to another requires a switch-over or set-up time. In the optimal production strategy, decisions depend on the complete state of the system. Because the processes at the different product flows depend on these decisions, the processes also depend on the complete state of the system. This means that the processes at the different product flows are not independent, which makes the analysis and construction of the optimal production strategy very complex. In fact, the complexity of the determination of this policy grows exponentially in the number of product types and if this number is too large, the optimal policy becomes intractable. Production strategies in which decisions depend on the complete system are defined as global lot sizing policies and are often difficult to construct or analyse, because of the dependence between the different product flows. However, in this thesis the construction of a global lot sizing policy is presented which also works for production systems with a large number of product types. The key factor that makes the construction possible is the fact that it is based on a fixed cycle policy. In Chapter 2, the fixed cycle policy is analysed for production systems with lost sales and in Chapter 6, the fixed cycle policy is analysed for production systems with backlog. The fixed cycle policy can be analysed per product flow and this decomposition property allows for the determination of the so called relative values. If it is assumed that one continues with a fixed cycle control, the relative values per product type represent the relative expected future costs for each decision. Based on these relative values, an improvement step (see Norman [65]) is performed which results in a ‘one step improvement’ policy. This policy is constructed and analysed in Chapters 2 and 7 for production systems with lost sales and production systems with backlog, respectively. This global lot sizing policy turns out to perform well compared to other, heuristic production strategies, especially in systems with a high load and demand processes with a high variability. A similar approach as for the production system with a single machine is performed in a system with two machines and lost sales in Chapter 3. Results show that in some cases the constructed strategy works well, although in some systems two separate one step improvement policies perform better. Examples of more heuristic production strategies are gated and exhaustive basestock policies. In these ’local lot sizing‘ policies, decisions depend only on the stock level of the product type that is set-up. But even in these policies, the processes at the different product flows are dependent. This makes the analysis difficult, but for production systems with backlog a translation can be made to a queueing system by looking at the number of products short to the base-stock level. So the machine becomes a server and each product flow becomes a queue. In these queueing systems, also known as polling systems, gated and exhaustive base-stock policies become gated and exhaustive visit disciplines. For polling systems, an exact analysis of the queue length or waiting time distribution is often possible via generating functions or Laplace-Stieltjes transforms. In Chapter 5, the determination of the sojourn time distribution of customers in a polling system with a (globally) gated visit discipline is presented, which comes down to the determination of the lead time distribution in the corresponding production system
    • 

    corecore