787 research outputs found

    Scheduling algorithms for high-speed switches

    Get PDF
    The virtual output queued (VOQ) switching architecture was adopted for high speed switch implementation owing to its scalability and high throughput. An ideal VOQ algorithm should provide Quality of Service (QoS) with low complexity. However, none of the existing algorithms can meet these requirements. Several algorithms for VOQ switches are introduced in this dissertation in order to improve upon existing algorithms in terms of implementation or QoS features. Initially, the earliest due date first matching (EDDFM) algorithm, which is stable for both uniform and non-uniform traffic patterns, is proposed. EDDFM has lower probability of cell overdue than other existing maximum weight matching algorithms. Then, the shadow departure time algorithm (SDTA) and iterative SDTA (ISDTA) are introduced. The QoS features of SDTA and ISDTA are better than other existing algorithms with the same computational complexity. Simulations show that the performance of a VOQ switch using ISDTA with a speedup of 1.5 is similar to that of an output queued (OQ) switch in terms of cell delay and throughput. Later, the enhanced Birkhoff-von Neumann decomposition (EBVND) algorithm based on the Birkhoff-von Neumann decomposition (BVND) algorithm, which can provide rate and cell delay guarantees, is introduced. Theoretical analysis shows that the performance of EBVND is better than BVND in terms of throughput and cell delay. Finally, the maximum credit first (MCF), the Enhanced MCF (EMCF), and the iterative MCF (IMCF) algorithms are presented. These new algorithms have the similar performance as BNVD, yet are easier to implement in practice

    On the Stability of Isolated and Interconnected Input-Queued Switches under Multiclass Traffic

    Get PDF
    In this correspondence, we discuss the stability of scheduling algorithms for input-queueing (IQ) and combined input/output queueing (CIOQ) packet switches. First, we show that a wide class of IQ schedulers operating on multiple traffic classes can achieve 100 % throughput. Then, we address the problem of the maximum throughput achievable in a network of interconnected IQ switches and CIOQ switches loaded by multiclass traffic, and we devise some simple scheduling policies that guarantee 100 % throughput. Both the Lyapunov function methodology and the fluid modeling approach are used to obtain our results

    An Overview of the Isochronets Architecture for High Speed Networks

    Get PDF
    This paper overviews a novel switching architecture for high-speed networks: Isochronets. Isochronets time-divide network bandwidth among routing trees. Traffic moves down a routing tree to the root during its time band. Network functions such as routing and flow control are entirely governed by band timers and require no processing of frame headers bits. Frame motions need not be delayed for switch processing, allowing Isochronets to scale over a large spectrum of transmission speeds and support all-optical implementations. The network functions as a media-access layer that can support multiple framing protocols simultaneously, handled by higher layers at the periphery. Internetworking is reduced to a simple media-layer bridging. Isochronets provide flexible quality of service control and multicasting through allocation of bands to routing trees. They can be tuned to span a spectrum of performance behaviors outperforming both circuit or packet switching
    • …
    corecore