135,094 research outputs found

    Scalable inference of topic evolution via models for latent geometric structures

    Full text link
    We develop new models and algorithms for learning the temporal dynamics of the topic polytopes and related geometric objects that arise in topic model based inference. Our model is nonparametric Bayesian and the corresponding inference algorithm is able to discover new topics as the time progresses. By exploiting the connection between the modeling of topic polytope evolution, Beta-Bernoulli process and the Hungarian matching algorithm, our method is shown to be several orders of magnitude faster than existing topic modeling approaches, as demonstrated by experiments working with several million documents in under two dozens of minutes.Comment: NeurIPS 201

    A New Class of Time Dependent Latent Factor Models with Applications

    Full text link
    In many applications, observed data are influenced by some combination of latent causes. For example, suppose sensors are placed inside a building to record responses such as temperature, humidity, power consumption and noise levels. These random, observed responses are typically affected by many unobserved, latent factors (or features) within the building such as the number of individuals, the turning on and off of electrical devices, power surges, etc. These latent factors are usually present for a contiguous period of time before disappearing; further, multiple factors could be present at a time. This paper develops new probabilistic methodology and inference methods for random object generation influenced by latent features exhibiting temporal persistence. Every datum is associated with subsets of a potentially infinite number of hidden, persistent features that account for temporal dynamics in an observation. The ensuing class of dynamic models constructed by adapting the Indian Buffet Process --- a probability measure on the space of random, unbounded binary matrices --- finds use in a variety of applications arising in operations, signal processing, biomedicine, marketing, image analysis, etc. Illustrations using synthetic and real data are provided

    Organizing the Aggregate: Languages for Spatial Computing

    Full text link
    As the number of computing devices embedded into engineered systems continues to rise, there is a widening gap between the needs of the user to control aggregates of devices and the complex technology of individual devices. Spatial computing attempts to bridge this gap for systems with local communication by exploiting the connection between physical locality and device connectivity. A large number of spatial computing domain specific languages (DSLs) have emerged across diverse domains, from biology and reconfigurable computing, to sensor networks and agent-based systems. In this chapter, we develop a framework for analyzing and comparing spatial computing DSLs, survey the current state of the art, and provide a roadmap for future spatial computing DSL investigation.Comment: 60 pages; Review chapter to appear as a chapter in book "Formal and Practical Aspects of Domain-Specific Languages: Recent Developments

    An Example for BeSpaceD and its Use for Decision Support in Industrial Automation

    Full text link
    We describe our formal methods-based spatial reasoning framework BeSpaceD and its application in decision support for industrial automation. In particular we are supporting analysis and decisions based on formal models for industrial plant and mining operations. BeSpaceD is a framework for deciding geometric and topological properties of spatio-temporal models. We present an example and report on our ongoing experience with applications in different projects around software and cyber-physical systems engineering. The example features abstracted aspects of a production plant model. Using the example we motivate the use of our framework in the context of an existing software platform supporting monitoring, incident handling and maintenance of industrial automation facilities in remote locations

    Towards Decision Support for Smart Energy Systems based on Spatio-temporal Models

    Full text link
    This report presents our SmartSpace event handling framework for managing smart-grids and renewable energy installations. SmartSpace provides decision support for human stakeholders. Based on different datasources that feed into our framework, a variety of analysis and decision steps are supported. These decision steps are ultimately used to provide adequate information to human stakeholders. The paper discusses potential data sources for decisions around smart energy systems and introduces a spatio-temporal modeling technique for the involved data. Operations to reason about the formalized data are provided. Our spatio-temporal models help to provide a semantic context for the data. Customized rules allow the specification of conditions under which information is provided to stakeholders. We exemplify our ideas and present our demonstrators including visualization capabilities

    Haptic Assembly and Prototyping: An Expository Review

    Full text link
    An important application of haptic technology to digital product development is in virtual prototyping (VP), part of which deals with interactive planning, simulation, and verification of assembly-related activities, collectively called virtual assembly (VA). In spite of numerous research and development efforts over the last two decades, the industrial adoption of haptic-assisted VP/VA has been slower than expected. Putting hardware limitations aside, the main roadblocks faced in software development can be traced to the lack of effective and efficient computational models of haptic feedback. Such models must 1) accommodate the inherent geometric complexities faced when assembling objects of arbitrary shape; and 2) conform to the computation time limitation imposed by the notorious frame rate requirements---namely, 1 kHz for haptic feedback compared to the more manageable 30-60 Hz for graphic rendering. The simultaneous fulfillment of these competing objectives is far from trivial. This survey presents some of the conceptual and computational challenges and opportunities as well as promising future directions in haptic-assisted VP/VA, with a focus on haptic assembly from a geometric modeling and spatial reasoning perspective. The main focus is on revisiting definitions and classifications of different methods used to handle the constrained multibody simulation in real-time, ranging from physics-based and geometry-based to hybrid and unified approaches using a variety of auxiliary computational devices to specify, impose, and solve assembly constraints. Particular attention is given to the newly developed 'analytic methods' inherited from motion planning and protein docking that have shown great promise as an alternative paradigm to the more popular combinatorial methods.Comment: Technical Report, University of Connecticut, 201

    Toward the Automatic Generation of a Semantic VRML Model from Unorganized 3D Point Clouds

    Full text link
    This paper presents our experience regarding the creation of 3D semantic facility model out of unorganized 3D point clouds. Thus, a knowledge-based detection approach of objects using the OWL ontology language is presented. This knowledge is used to define SWRL detection rules. In addition, the combination of 3D processing built-ins and topological Built-Ins in SWRL rules aims at combining geometrical analysis of 3D point clouds and specialist's knowledge. This combination allows more flexible and intelligent detection and the annotation of objects contained in 3D point clouds. The created WiDOP prototype takes a set of 3D point clouds as input, and produces an indexed scene of colored objects visualized within VRML language as output. The context of the study is the detection of railway objects materialized within the Deutsche Bahn scene such as signals, technical cupboards, electric poles, etc. Therefore, the resulting enriched and populated domain ontology, that contains the annotations of objects in the point clouds, is used to feed a GIS system.Comment: arXiv admin note: substantial text overlap with arXiv:1301.4991, arXiv:1301.478

    Supporting Finite Element Analysis with a Relational Database Backend, Part I: There is Life beyond Files

    Full text link
    In this paper, we show how to use a Relational Database Management System in support of Finite Element Analysis. We believe it is a new way of thinking about data management in well-understood applications to prepare them for two major challenges, - size and integration (globalization). Neither extreme size nor integration (with other applications over the Web) was a design concern 30 years ago when the paradigm for FEA implementation first was formed. On the other hand, database technology has come a long way since its inception and it is past time to highlight its usefulness to the field of scientific computing and computer based engineering. This series aims to widen the list of applications for database designers and for FEA users and application developers to reap some of the benefits of database development

    Mini-Unmanned Aerial Vehicle-Based Remote Sensing: Techniques, Applications, and Prospects

    Full text link
    The past few decades have witnessed the great progress of unmanned aircraft vehicles (UAVs) in civilian fields, especially in photogrammetry and remote sensing. In contrast with the platforms of manned aircraft and satellite, the UAV platform holds many promising characteristics: flexibility, efficiency, high-spatial/temporal resolution, low cost, easy operation, etc., which make it an effective complement to other remote-sensing platforms and a cost-effective means for remote sensing. Considering the popularity and expansion of UAV-based remote sensing in recent years, this paper provides a systematic survey on the recent advances and future prospectives of UAVs in the remote-sensing community. Specifically, the main challenges and key technologies of remote-sensing data processing based on UAVs are discussed and summarized firstly. Then, we provide an overview of the widespread applications of UAVs in remote sensing. Finally, some prospects for future work are discussed. We hope this paper will provide remote-sensing researchers an overall picture of recent UAV-based remote sensing developments and help guide the further research on this topic

    Necessary and Sufficient Conditions and a Provably Efficient Algorithm for Separable Topic Discovery

    Full text link
    We develop necessary and sufficient conditions and a novel provably consistent and efficient algorithm for discovering topics (latent factors) from observations (documents) that are realized from a probabilistic mixture of shared latent factors that have certain properties. Our focus is on the class of topic models in which each shared latent factor contains a novel word that is unique to that factor, a property that has come to be known as separability. Our algorithm is based on the key insight that the novel words correspond to the extreme points of the convex hull formed by the row-vectors of a suitably normalized word co-occurrence matrix. We leverage this geometric insight to establish polynomial computation and sample complexity bounds based on a few isotropic random projections of the rows of the normalized word co-occurrence matrix. Our proposed random-projections-based algorithm is naturally amenable to an efficient distributed implementation and is attractive for modern web-scale distributed data mining applications.Comment: Typo corrected; Revised argument in Lemma 3 and
    • …
    corecore