50,190 research outputs found

    Power system security enhancement by HVDC links using a closed-loop emergency control

    Get PDF
    In recent years, guaranteeing that large-scale interconnected systems operate safely, stably and economically has become a major and emergency issue. A number of high profile blackouts caused by cascading outages have focused attention on this issue. Embedded HVDC (High Voltage Direct Current) links within a larger AC power system are known to act as a “firewall” against cascading disturbances and therefore, can effectively contribute in preventing blackouts. A good example is the 2003 blackout in USA and Canada, where the Québec grid was not affected due to its HVDC interconnection. In the literature, many works have studied the impact of HVDC on the power system stability, but very few examples exist in the area of its impact on the system security. This paper presents a control strategy for HVDC systems to increase their contribution to system security. A real-time closed-loop control scheme is used to modulate the DC power of HVDC links to alleviate AC system overloads and improve system security. Simulations carried out on a simplified model of the Hydro-Québec network show that the proposed method works well and can greatly improve system security during emergency situations.Peer reviewedFinal Accepted Versio

    Optimal allocation of FACTS devices in distribution networks using Imperialist Competitive Algorithm

    Get PDF
    Copyright © 2005-2015 Praise Worthy Prize. The publisher granted a permission to the author to archive this article in BURA.FACTS devices are used for controlling the voltage, stability, power flow and security of transmission lines. Imperialist Competitive is a recently developed optimization technique, used widely in power systems. This paper presents an approach to finding the optimal location and size of FACTS devices in a distribution network using the Imperialist Competitive technique. IEEE 30-bus system is used as a case study. The results show the advantages of the Imperialist Competitive technique over the conventional approaches. © 2013 Praise Worthy Prize S.r.l. - All rights reserved

    Investigation of FACTS devices to improve power quality in distribution networks

    Get PDF
    Flexible AC transmission system (FACTS) technologies are power electronic solutions that improve power transmission through enhanced power transfer volume and stability, and resolve quality and reliability issues in distribution networks carrying sensitive equipment and non-linear loads. The use of FACTS in distribution systems is still in its infancy. Voltages and power ratings in distribution networks are at a level where realistic FACTS devices can be deployed. Efficient power converters and therefore loss minimisation are crucial prerequisites for deployment of FACTS devices. This thesis investigates high power semiconductor device losses in detail. Analytical closed form equations are developed for conduction loss in power devices as a function of device ratings and operating conditions. These formulae have been shown to predict losses very accurately, in line with manufacturer data. The developed formulae enable circuit designers to quickly estimate circuit losses and determine the sensitivity of those losses to device voltage and current ratings, and thus select the optimal semiconductor device for a specific application. It is shown that in the case of majority carrier devices (such as power MOSFETs), the conduction power loss (at rated current) increases linearly in relation to the varying rated current (at constant blocking voltage), but is a square root of the variable blocking voltage when rated current is fixed. For minority carrier devices (such as a pin diode or IGBT), a similar relationship is observed for varying current, however where the blocking voltage is altered, power losses are derived as a square root with an offset (from the origin). Finally, this thesis conducts a power loss-oriented evaluation of cascade type multilevel converters suited to reactive power compensation in 11kV and 33kV systems. The cascade cell converter is constructed from a series arrangement of cell modules. Two prospective structures of cascade type converters were compared as a case study: the traditional type which uses equal-sized cells in its chain, and a second with a ternary relationship between its dc-link voltages. Modelling (at 81 and 27 levels) was carried out under steady state conditions, with simplified models based on the switching function and using standard circuit simulators. A detailed survey of non punch through (NPT) and punch through (PT) IGBTs was completed for the purpose of designing the two cascaded converters. Results show that conduction losses are dominant in both types of converters in NPT and PT IGBTs for 11kV and 33kV systems. The equal-sized converter is only likely to be useful in one case (27-levels in the 33kV system). The ternary-sequence converter produces lower losses in all other cases, and this is especially noticeable for the 81-level converter operating in an 11kV network

    Voltage Stability Analysis of Grid-Connected Wind Farms with FACTS: Static and Dynamic Analysis

    Get PDF
    Recently, analysis of some major blackouts and failures of power system shows that voltage instability problem has been one of the main reasons of these disturbances and networks collapse. In this paper, a systematic approach to voltage stability analysis using various techniques for the IEEE 14-bus case study, is presented. Static analysis is used to analyze the voltage stability of the system under study, whilst the dynamic analysis is used to evaluate the performance of compensators. The static techniques used are Power Flow, V–P curve analysis, and Q–V modal analysis. In this study, Flexible Alternating Current Transmission system (FACTS) devices- namely, Static Synchronous Compensators (STATCOMs) and Static Var Compensators (SVCs) - are used as reactive power compensators, taking into account maintaining the violated voltage magnitudes of the weak buses within the acceptable limits defined in ANSI C84.1. Simulation results validate that both the STATCOMs and the SVCs can be effectively used to enhance the static voltage stability and increasing network loadability margin. Additionally, based on the dynamic analysis results, it has been shown that STATCOMs have superior performance, in dynamic voltage stability enhancement, compared to SVCs

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15
    • …
    corecore